The Science Pacing Guide is based on the Next Generation Science Standards, and the I CAN statements are tailored to the needs of the students in the Lansing School District. For easy access to the actual state standards as well as supporting information and resources visit the official Next Generation Science Standards website at: www.nextgenscience.org.

Many thanks to... the teachers and administrators who helped develop and revise the pacing guides.

The Science Pacing Guide is a realistic time frame for instruction and assessment. They establish paced, student learning expectations and provide a starting point for the implementation of the Michigan State Standards.

The following tips may be helpful as you begin using the Pacing Guide:

• Introduce 9-week content skills according to the Pacing Guide.
• Once a skill is mastered, continue to practice it.
• Continue to reinforce skills and concepts throughout the year until mastery is achieved.
• Skills can be introduced earlier than listed, but no later, and can be assessed at any point after introduction.
• Compare your current pace to the Pacing Guide and adjust as needed.
• Become familiar with sequencing at previous and subsequent grade levels.
• The website, www.nextgenscience.org, can be used to find more information and to better understand Michigan State Standards.
• An electronic version of the Pacing Guides can be found on the Lansing School District homepage www.lansingschools.net under Quicklinks.

Yvonne Caamal Canul
Superintendent

Mark Coscarella, Ed.D.
Deputy Superintendent

Mara Lud
Executive Director of Instructional Learning

Delsa Chapman
Director of Magnet Programs & High Schools

Resources *

Vocabulary

attract
bar magnet
change of direction
change of motion
disc/ring magnet
faster
force
force strength
gravity
horseshoe magnet
iron filings
lines of force
magnet
magnetic fields
magnetic poles
motion
moving away from poles
position
pull
push
repel
rod magnet
slower
slowing down
speed
speeding up
start
stop
toward
balanced forces
changes of speed
down
east
left
measurement of motion
north
right
south
unbalanced forces
up
west

Crosscutting Concepts

3-PS2-1
Cause and Effect

Cause and effect relationships are routinely identified.

3-PS2-2
Patterns

Patterns of change can be used to make predictions.

3-PS2-3
Cause and Effect

Cause and effect relationships are routinely identified, tested, and used to explain change.

Resources *

* List your recommended texts and resources - we will be collecting them at the end of the year.
### Forces and Motions

Each force acts on one particular object and has both strength and a direction. An object at rest typically has multiple forces acting on it, but they add to give zero net force on the object. Forces that do not sum to zero can cause changes in the object’s speed or direction of motion. Objects in contact exert forces on each other.

### Core Idea

Forces and Motions

The patterns of an object’s motion in various situations can be observed and measured; when that past motion exhibits a regular pattern, future motion can be predicted from it.

### Standard

Plan and conduct an investigation to provide evidence of the effects of balanced and unbalanced forces on the motion of an object.

**Clarification Statement:** Examples could include an unbalanced force on one side of a ball can make it start moving; and, balanced forces pushing on a box from both sides will not produce any motion at all.

### Science and Engineering Practices

Planning and Carrying Out Investigations

Planning and carrying out investigations to answer questions or test solutions to problems in grades 3–5 builds on prior experiences and progresses to include investigations, that control variables and provide evidence to support explanations or design solutions.

- Plan and conduct an investigation collaboratively to produce data to serve as the basis for evidence, using fair tests in which variables are controlled and the number of trials considered.

### Types of Interactions

Electric, and magnetic forces between a pair of objects do not require that the objects be in contact. The sizes of the forces in each situation depend on the properties of the objects and their distances apart, and, for forces between two magnets, on their orientation relative to each other.

**Clarification Statement:** Electric, and magnetic forces between a pair of objects do not require that the objects be in contact. The sizes of the forces in each situation depend on the properties of the objects and their distances apart, and, for forces between two magnets, on their orientation relative to each other.

### Types of Interactions

Electric, and magnetic forces between a pair of objects do not require that the objects be in contact. The sizes of the forces in each situation depend on the properties of the objects and their distances apart, and, for forces between two magnets, on their orientation relative to each other.

**Clarification Statement:** Electric, and magnetic forces between a pair of objects do not require that the objects be in contact. The sizes of the forces in each situation depend on the properties of the objects and their distances apart, and, for forces between two magnets, on their orientation relative to each other.

### Types of Interactions

Electric, and magnetic forces between a pair of objects do not require that the objects be in contact. The sizes of the forces in each situation depend on the properties of the objects and their distances apart, and, for forces between two magnets, on their orientation relative to each other.

**Clarification Statement:** Electric, and magnetic forces between a pair of objects do not require that the objects be in contact. The sizes of the forces in each situation depend on the properties of the objects and their distances apart, and, for forces between two magnets, on their orientation relative to each other.
The Science Pacing Guide is based on the Next Generation Science Standards, and the I CAN statements are tailored to the needs of the students in the Lansing School District. For easy access to the actual state standards as well as supporting information and resources visit the official Next Generation Science Standards website at: www.nextgenscience.org.

Many thanks to... the teachers and administrators who helped develop and revise the pacing guides.

Yvonne Caamil Canul
Superintendent

Mark Coscarella, Ed.D.
Deputy Superintendent

Mara Lud
Executive Director of Instructional Learning

Vocabulary

- altitude
- bar graphs
- breezy
- blizzard
- calm
- Celsius
- clear (RE: weather)
- climate
- cloud
- cloud cover
- cloudy
- cold
- cool
- daily weather patterns
- data
- degrees
- Fahrenheit
- fall (autumn)
- foggy
- freezing rain
- hot
- humidity
- inches
- latitude
- lightening
- partly cloudy
- pictographs
- precautions
- precipitation
- rain gauge
- seasons
- severe weather
- spring
- summer
- sunny
- tables (as graphic organizers)
- thermometer
- thunderstorms
- tornadoes
- warm
- weather
- weather conditions
- weather seasons
- wind sock
- wind vane
- windy

Crosscutting Concepts

3-ESS2-1
Patterns
Patterns of change can be used to make predictions.

3-ESS2-2
Patterns
Patterns of change can be used to make predictions.

3-ESS3-1
Cause and Effect
Cause and effect relationships are routinely identified, tested, and used to explain change.

Resources *

- altitude
- bar graphs
- breezy
- blizzard
- calm
- Celsius
- clear (RE: weather)
- climate
- cloud
- cloud cover
- cloudy
- cold
- cool
data
degrees
Fahrenheit
fall (autumn)
foggy
freezing rain
hot
humidity
inches
latitude
lightening
partly cloudy
pictographs
precautions
precipitation
rain gauge
seasons
severe weather
spring
summer
sunny
tables (as graphic organizers)
thermometer
thunderstorms
tornadoes
warm
weather
weather conditions
weather seasons
wind sock
wind vane
windy

* List your recommended texts and resources - we will be collecting them at the end of the year.

Introduction to Your Science Pacing Guide

Pacing Guides create a realistic time frame for instruction and assessment. They establish paced, student learning expectations and provide a starting point for the implementation of the Michigan State Standards.

The following tips may be helpful as you begin using the Pacing Guide:

- Introduce 9-week content skills according to the Pacing Guide.
- Once a skill is mastered, continue to practice it.
- Continue to reinforce skills and concepts throughout the year until mastery is achieved.
- Skills can be introduced earlier than listed, but no later, and can be assessed at any point after introduction.
- Compare your current pace to the Pacing Guide and adjust as needed.
- Become familiar with sequencing at previous and subsequent grade levels.
- The website, www.nextgenscience.org, can be used to find more information and to better understand Michigan State Standards.
- An electronic version of the Pacing Guides can be found on the Lansing School District homepage www.lansingschools.net under Quicklinks.
### Grade 3 Science Second Quarter

<table>
<thead>
<tr>
<th>Core Idea</th>
<th>Earth’s Systems 3-ESS2-1</th>
<th>Earth’s Systems 3-ESS2-2</th>
<th>Earth’s Systems 3-ESS3-1</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>I CAN STATEMENT</strong></td>
<td>☐ I CAN show weather data for each of the seasons.</td>
<td>☐ I CAN gather and share information about climates from around the world.</td>
<td>☐ I CAN form an opinion about a design to fix a weather problem.</td>
<td></td>
</tr>
</tbody>
</table>

#### Weather and Climate

**Scientists record patterns of the weather across different times and areas so that they can make predictions about what kind of weather might happen next.**

**Represent data in tables and graphical displays to describe typical weather conditions expected during a particular season.**

*Clarification Statement: Examples of data could include average temperature, precipitation, and wind direction.*

<table>
<thead>
<tr>
<th><strong>I CAN</strong></th>
<th><strong>I CAN</strong></th>
<th><strong>I CAN</strong></th>
</tr>
</thead>
<tbody>
<tr>
<td>Gather and share information about climates from around the world.</td>
<td>Form an opinion about a design to fix a weather problem.</td>
<td>Gather and share information about climates from around the world.</td>
</tr>
</tbody>
</table>

#### Natural Hazards

**A variety of natural hazards result from natural processes. Humans cannot eliminate natural hazards but can take steps to reduce their impacts.**

- Make a claim about the merit of a design solution that reduces the impacts of a weather-related hazard.

*Clarification Statement: Examples of design solutions to weather-related hazards could include barriers to prevent flooding, wind resistant roofs, and lightning rods.*

### Science and Engineering Practices

#### Analyzing and Interpreting Data

**Analyzing data in 3–5 builds on K–2 experiences and progresses to introducing quantitative approaches to collecting data and conducting multiple trials of qualitative observations. When possible and feasible, digital tools should be used.**

- Represent data in tables and various graphical displays (bar graphs and pictographs) to reveal patterns that indicate relationships.

- Obtain, evaluating, and communicating information in 3–5 builds on K–2 experiences and progresses to evaluating the merit and accuracy of ideas and methods.

- Obtain and combine information from books and other reliable media to explain phenomena.

- Engaging in argument from evidence in 3–5 builds on K–2 experiences and progresses to critiquing the scientific explanations or solutions proposed by peers by citing relevant evidence about the natural and designed world(s).

- Make a claim about the merit of a solution to a problem by citing relevant evidence about how it meets the criteria and constraints of the problem.
The Science Pacing Guide is based on the Next Generation Science Standards, and the I CAN statements are tailored to the needs of the students in the Lansing School District. For easy access to the actual state standards as well as supporting information and resources visit the official Next Generation Science Standards website at: www.nextgenscience.org.

Many thanks to... the teachers and administrators who helped develop and revise the pacing guides.

The Science Pacing Guide is a realistic time frame for instruction and assessment. They establish paced, student learning expectations and provide a starting point for the implementation of the Michigan State Standards.

The following tips may be helpful as you begin using the Pacing Guide:

- Introduce 9-week content skills according to the Pacing Guide.
- Once a skill is mastered, continue to practice it.
- Continue to reinforce skills and concepts throughout the year until mastery is achieved.
- Skills can be introduced earlier than listed, but no later, and can be assessed at any point after introduction.
- Compare your current pace to the Pacing Guide and adjust as needed.
- Become familiar with sequencing at previous and subsequent grade levels.
- The website, www.nextgenscience.org, can be used to find more information and to better understand Michigan State Standards.
- An electronic version of the Pacing Guides can be found on the Lansing School District homepage www.lansingschools.net under Quicklinks.

Vocabulary

- adult
- air
- beak shape
- body coverings (e.g. feathers, fur, skin, hair, scales)
- butterfly
- characteristics
- cocoon
- ecosystems
- egg
- environment
- eye color
- food
- habitat
- inherited
- insects
- interdependent
- larva
- life cycle
- metamorphosis
- moth
- needs of animals
- observable features
- organism(s)
- parents
- pupa
- reproduction
- offspring
- requirements for life
- similarities and differences between offspring and their parents
- survival
- traits
- variations
- water young

Crosscutting Concepts

3-LS3-1 Patterns

Similarities and differences in patterns can be used to sort and classify natural phenomena.

3-LS3-2 Cause and Effect

Cause and effect relationships are routinely identified and used to explain change.

3LS4-2 Cause and Effect

Cause and effect relationships are routinely identified and used to explain change.

Resources *

* List your recommended texts and resources - we will be collecting them at the end of the year.
<table>
<thead>
<tr>
<th>Grade 3</th>
<th>Science Third Quarter</th>
</tr>
</thead>
<tbody>
<tr>
<td>I CAN STATEMENT</td>
<td></td>
</tr>
</tbody>
</table>

- **☐ I CAN** examine data to show that plants and animals inherit traits from parents but all are a little different.
- **☐ I CAN** show that an organism is affected by its environment.
- **☐ I CAN** explain how certain individuals have certain physical advantages that will help them survive.

**Core Idea**

**Inheritance of Traits**

- Many characteristics of organisms are inherited from their parents.

**Inheritance of Traits**

- Other characteristics result from individuals' interactions with the environment, which can range from diet to learning. Many characteristics involve both inheritance and environment.

**Natural Selection**

- Sometimes the differences in characteristics between individuals of the same species provide advantages in surviving, finding mates, and reproducing.

**Standard**

**Analyze and interpret data to provide evidence that plants & animals have traits inherited from parents & that variation of these traits exists in a group of similar organisms.**

Clariation Statement: Patterns are the similarities and differences in traits shared between offspring and their parents, or among siblings. Emphasis is on organisms other than humans.

**Use evidence to support the explanation that traits can be influenced by the environment.**

Clariation Statement: Examples of the environment affecting a trait could include normally tall plants grown with insufficient water are stunted; and, a pet dog that is given too much food and little exercise may become overweight.

**Use evidence to construct an explanation for how the variations in characteristics among individuals of the same species may provide advantages in surviving, finding mates, & reproducing.**

Clariation Statement: Examples of cause and effect relationships could be plants that have larger thorns than other plants may be less likely to be eaten by predators; and, animals that have better camouflage coloration than other animals may be more likely to survive and therefore more likely to leave offspring.

**Science and Engineering Practices**

**Analyzing and Interpreting Data**

- Analyzing data in 3–5 builds on K–2 experiences and progresses to introducing quantitative approaches to collecting data and conducting multiple trials of qualitative observations. When possible and feasible, digital tools should be used.
- Analyze and interpret data to make sense of phenomena using logical reasoning.

**Constructing Explanations and Designing Solutions**

- Constructing explanations and designing solutions in 3–5 builds on K–2 experiences and progresses to the use of evidence in constructing explanations that specify variables that describe and predict phenomena and in designing multiple solutions to design problems.
- Use evidence (e.g., observations, patterns) to support an explanation.

- Constructing explanations and designing solutions in 3–5 builds on K–2 experiences and progresses to the use of evidence in constructing explanations that specify variables that describe and predict phenomena and in designing multiple solutions to design problems.
- Use evidence (e.g., observations, patterns) to construct an explanation.
The Science Pacing Guide is based on the Next Generation Science Standards, and the I CAN statements are tailored to the needs of the students in the Lansing School District. For easy access to the actual state standards as well as supporting information and resources visit the official Next Generation Science Standards website at: www.nextgenscience.org.

Vocabulary

- adult
- air
- beak shape
- body coverings: feathers, fur, skin
- butterfly
- characteristics
- chrysalis
- egg
- eye color
- flower
- flowering plants
- food
- food storage
- fruit
- hair, scales
- insects
- larva
- leaf shape
- life cycle
- light
- makes its own food
- metamorphosis
- needs of plants
- parent
- plant
- pupa
- seed
- size
- water

Crosscutting Concepts

<table>
<thead>
<tr>
<th>3-LS4-1</th>
<th>Scale, Proportion, and Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Observable phenomena exist from very short to very long time periods.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>3LS4-2</th>
<th>Cause and Effect</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cause and effect relationships are routinely identified and used to explain change.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>3LS4-3</th>
<th>Cause and Effect</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cause and effect relationships are routinely identified and used to explain change.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>3-LS4-4</th>
<th>Systems and System Models</th>
</tr>
</thead>
<tbody>
<tr>
<td>A system can be described in terms of its components and their interactions.</td>
<td></td>
</tr>
</tbody>
</table>

Resources *

* List your recommended texts and resources - we will be collecting them at the end of the year.

Introduction to Your Science Pacing Guide

- Introduce 9-week content skills according to the Pacing Guide.
- Once a skill is mastered, continue to practice it.
- Continue to reinforce skills and concepts throughout the year until mastery is achieved.
- Skills can be introduced earlier than listed, but no later, and can be assessed at any point after introduction.
- Compare your current pace to the Pacing Guide and adjust as needed.
- Become familiar with sequencing at previous and subsequent grade levels.
- The website, www.nextgenscience.org, can be used to find more information and to better understand Michigan State Standards.
- An electronic version of the Pacing Guides can be found on the Lansing School District homepage www.lansingschools.net under Quicklinks.
<table>
<thead>
<tr>
<th>Grade 3</th>
<th>Science</th>
<th>Fourth Quarter</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Core Idea</strong></td>
<td><strong>Evidence of Common Ancestry and Diversity</strong></td>
<td><strong>Standard</strong></td>
</tr>
<tr>
<td>Biological Evolution - Unity and Diversity 3-LS4-1</td>
<td>Biological Evolution - Unity and Diversity 3-LS4-2</td>
<td>Biological Evolution - Unity and Diversity 3-LS4-3</td>
</tr>
<tr>
<td>Biological Evolution - Unity and Diversity 3-LS4-4</td>
<td>Biological Evolution - Unity and Diversity 3-LS4-4</td>
<td>Biological Evolution - Unity and Diversity 3-LS4-4</td>
</tr>
<tr>
<td><strong>I CAN STATEMENT</strong></td>
<td><strong>I CAN show that fossils from an area show traits related to their environment. habitats.</strong></td>
<td><strong>I CAN show that not all living things are suited for all habitats.</strong></td>
</tr>
<tr>
<td></td>
<td><strong>I CAN obtain information from text about temperature, precipitation, &amp; wind direction for the climate of a region.</strong></td>
<td><strong>I CAN evaluate a solution to an environmental problem for living things.</strong></td>
</tr>
<tr>
<td></td>
<td><strong>I CAN compare/contrast climates from different regions (of the world or of MI?)</strong></td>
<td></td>
</tr>
<tr>
<td><strong>Natural Selection</strong></td>
<td><strong>Adaptation</strong></td>
<td><strong>Biodiversity and Humans</strong></td>
</tr>
<tr>
<td>Some kinds of plants and animals that once lived on Earth are no longer found anywhere. Fossils provide evidence about the types of organisms that lived long ago and also about the nature of their environments.</td>
<td>Sometimes the differences in characteristics between individuals of the same species provide advantages in surviving, finding mates, and reproducing.</td>
<td>Populations live in a variety of habitats, and change in those habitats affects the organisms living there.</td>
</tr>
<tr>
<td><strong>Clarification Statement:</strong> Examples of data could include type, size, and distributions of fossil organisms. Examples of fossils and environments could include marine fossils found on dry land, tropical plant fossils found in Arctic areas, and fossils of extinct organisms.</td>
<td><strong>Construct an argument with evidence that in a particular habitat some organisms can survive well, some survive less well, and some cannot survive at all.</strong></td>
<td><strong>Make a claim about the merit of a solution to a problem caused when the environment changes and the types of plants and animals that live there may change.</strong></td>
</tr>
<tr>
<td><strong>Clarification Statement:</strong> Examples of cause and effect relationships could be plants that have larger thorns than other plants may be less likely to be eaten by predators; and, animals that have better camouflage coloration than other animals may be more likely to survive and therefore more likely to leave offspring.</td>
<td><strong>Clarification Statement:</strong> Examples of evidence could include needs and characteristics of the organisms and habitats involved. The organisms and their habitat make up a system in which the parts depend on each other.</td>
<td><strong>Clarification Statement:</strong> Examples of environmental changes could include changes in land characteristics, water distribution, temperature, food, and other organisms.</td>
</tr>
<tr>
<td><strong>Science and Engineering Practices</strong></td>
<td>Analyze and interpret data from fossils to provide evidence of the organisms and the environments in which they lived long ago.</td>
<td>Construct an argument with evidence that in a particular habitat some organisms can survive well, some survive less well, and some cannot survive at all.</td>
</tr>
<tr>
<td>Analyzing and Interpreting Data</td>
<td>Use evidence to construct an explanation for how the variations in characteristics among individuals of the same species may provide advantages in surviving, finding mates, and reproducing.</td>
<td>Make a claim about the merit of a solution to a problem caused when the environment changes and the types of plants and animals that live there may change.</td>
</tr>
<tr>
<td>Analyzing data in 3–5 builds on K–2 experiences and progresses to introducing quantitative approaches to collecting data and conducting multiple trials of qualitative observations. When possible and feasible, digital tools should be used. Analyze and interpret data to make sense of phenomena using logical reasoning.</td>
<td><strong>Clarification Statement:</strong> Examples of cause and effect relationships could be plants that have larger thorns than other plants may be less likely to be eaten by predators; and, animals that have better camouflage coloration than other animals may be more likely to survive and therefore more likely to leave offspring.</td>
<td><strong>Clarification Statement:</strong> Examples of environmental changes could include changes in land characteristics, water distribution, temperature, food, and other organisms.</td>
</tr>
<tr>
<td>Constructing Explanations and Designing Solutions</td>
<td><strong>Clarification Statement:</strong> Examples of evidence could include needs and characteristics of the organisms and habitats involved. The organisms and their habitat make up a system in which the parts depend on each other.</td>
<td><strong>Clarification Statement:</strong> Examples of environmental changes could include changes in land characteristics, water distribution, temperature, food, and other organisms.</td>
</tr>
<tr>
<td>Constructing explanations and designing solutions in 3–5 builds on K–2 experiences and progresses to the use of evidence in constructing explanations that specify variables that describe and predict phenomena and in designing multiple solutions to design problems.</td>
<td><strong>Construct an argument with evidence.</strong></td>
<td><strong>Make a claim about the merit of a solution to a problem caused when the environment changes and the types of plants and animals that live there may change.</strong></td>
</tr>
<tr>
<td><strong>Use evidence (e.g., observations, patterns) to construct an explanation.</strong></td>
<td><strong>Construct an argument with evidence.</strong></td>
<td><strong>Make a claim about the merit of a solution to a problem caused when the environment changes and the types of plants and animals that live there may change.</strong></td>
</tr>
<tr>
<td><strong>Engaging in Argument from Evidence</strong></td>
<td>Engaging in argument from evidence in 3–5 builds on K–2 experiences and progresses to critiquing the scientific explanations or solutions proposed by peers by citing relevant evidence about the natural and designed world(s).</td>
<td><strong>Make a claim about the merit of a solution to a problem caused when the environment changes and the types of plants and animals that live there may change.</strong></td>
</tr>
<tr>
<td><strong>Use evidence (e.g., observations, patterns) to construct an explanation.</strong></td>
<td><strong>Construct an argument with evidence.</strong></td>
<td><strong>Make a claim about the merit of a solution to a problem caused when the environment changes and the types of plants and animals that live there may change.</strong></td>
</tr>
<tr>
<td>Engaging in argument from evidence in 3–5 builds on K–2 experiences and progresses to critiquing the scientific explanations or solutions proposed by peers by citing relevant evidence about the natural and designed world(s).</td>
<td><strong>Construct an argument with evidence.</strong></td>
<td><strong>Make a claim about the merit of a solution to a problem caused when the environment changes and the types of plants and animals that live there may change.</strong></td>
</tr>
<tr>
<td><strong>Use evidence (e.g., observations, patterns) to construct an explanation.</strong></td>
<td><strong>Construct an argument with evidence.</strong></td>
<td><strong>Make a claim about the merit of a solution to a problem caused when the environment changes and the types of plants and animals that live there may change.</strong></td>
</tr>
</tbody>
</table>

**Analyzing and Interpreting Data**

- Analyzing data in 3–5 builds on K–2 experiences and progresses to introducing quantitative approaches to collecting data and conducting multiple trials of qualitative observations. When possible and feasible, digital tools should be used.
- Analyze and interpret data to make sense of phenomena using logical reasoning.

**Constructing Explanations and Designing Solutions**

- Constructing explanations and designing solutions in 3–5 builds on K–2 experiences and progresses to the use of evidence in constructing explanations that specify variables that describe and predict phenomena and in designing multiple solutions to design problems.
- **Use evidence (e.g., observations, patterns) to construct an explanation.**

**Engaging in Argument from Evidence**

- Engaging in argument from evidence in 3–5 builds on K–2 experiences and progresses to critiquing the scientific explanations or solutions proposed by peers by citing relevant evidence about the natural and designed world(s).
- **Construct an argument with evidence.**
- **Make a claim about the merit of a solution to a problem caused when the environment changes and the types of plants and animals that live there may change.**