The Mathematics Pacing Guide is based on the Common Core State Standards, and the I CAN statements are tailored to the needs of the students in the Lansing School District. For easy access to the actual state standards as well as supporting information and resources visit the official Common Core website at www.corestandards.org.

This Mathematics Pacing Guide has been aligned to the Go Math! Series for this grade level. Please teach the units and concepts with fidelity in the order that they have been laid out.

We will review the pacing guide at the end of the year and adjust accordingly.

The following tips may be helpful as you use the Pacing Guide:
• Introduce 9-week content skills according to the Pacing Guide.
• Incorporate the research-based instructional practices listed on the back.
• Once a skill is mastered, continue to practice it.
• Continue to reinforce skills and concepts throughout the year until mastery is achieved.
• Become familiar with sequencing at previous and subsequent grade levels.
• The website, www.corestandards.org, can be used to find more information and to better understand Common Core State Standards.
• An electronic version of the Pacing Guides can be found on the Lansing School District homepage www.lansingschools.net under Links.

Research-based Instructional Practices
• Actively seek out and encourage student’s thoughts and points of view, and allow students to make choices.
• Explicitly connect lesson content to students’ lives.
• Encourage meaningful peer interactions and promote peer conversations.
• Give students the floor. Avoid dominating classroom conversations by maintaining a balance of teacher and student talk.
• Help students consider different perspectives. Present and encourage multiple and varied points of view.
• Convey how and when to use concepts and procedures and the difference between them.
• Assist your students to define and refine their understanding by presenting an assortment of examples and contrasting non-examples that illustrate the concept or procedure.
• Offer extended opportunities for students to examine and analyze information. Engage students in higher-order thinking skills by giving them chances to explore data and evidence.
• Provide opportunities for students to make predictions and brainstorm consequences. Encourage them to discover and evaluate their own answers.
• Challenge students with open-ended tasks that have a variety of solutions and require students to think about how to use their knowledge in creative ways.
• Help students monitor their own thinking by showing them how you approach a problem and the questions you ask yourself to monitor your own thinking process. Model the process by thinking out loud.
• Help students to think about their own learning by offering opportunities to reflect on, plan, and share their developing thought processes.
<table>
<thead>
<tr>
<th>Unit 1: Quantities and Modeling</th>
<th>Unit 2: Understanding Functions</th>
<th>First Quarter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module 1: Quantitative Reasoning</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.1: A.REI.1 Solving Equations</td>
<td></td>
<td></td>
</tr>
<tr>
<td>☐ I CAN demonstrate the correct steps used to solve a simple problem.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.2: N.Q.2 Modeling Quantities</td>
<td></td>
<td></td>
</tr>
<tr>
<td>☐ I CAN use the correct quantities when modeling a problem.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.3: N.Q.3 Reporting with Precision and Accuracy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>☐ I CAN determine an appropriate level of accuracy to assign to a quantity.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Module 2: Algebraic Models</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.1: A.SSE.1 Modeling with Expressions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>☐ I CAN identify the coefficients in an expression.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.2: A.CED.1 Creating and Solving Equations</td>
<td></td>
<td></td>
</tr>
<tr>
<td>☐ I CAN create linear inequalities in one variable to solve problems.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.3: A.CED.4 Solving for a Variable</td>
<td></td>
<td></td>
</tr>
<tr>
<td>☐ I CAN rearrange a formula to correctly solve for a variable.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.4: A.CED.3 Creating and Solving Inequalities</td>
<td></td>
<td></td>
</tr>
<tr>
<td>☐ I CAN create and solve an inequality that represents a real world situation.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.5: A.CED.1 Creating and Solving Compound Inequalities</td>
<td></td>
<td></td>
</tr>
<tr>
<td>☐ I CAN use compound linear inequalities to solve problems.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Module 3: Functions and Models</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.1: F.IF.4 Graphing Relationships</td>
<td></td>
<td></td>
</tr>
<tr>
<td>☐ I CAN sketch a graph from a verbal description of the relationship of the points.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.2: F.IF.1 Understanding Relations and Functions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>☐ I CAN demonstrate that a function must have exactly one y-value for every x-value.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.3: F.IF.2 Modeling with Functions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>☐ I CAN interpret statements that use function notation.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.4: F.IF.1 Graphing Functions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>☐ I CAN show that x-values are the domain and the y-values are the range.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The Mathematics Pacing Guide is based on the Common Core State Standards, and the I CAN statements are tailored to the needs of the students in the Lansing School District. For easy access to the actual state standards as well as supporting information and resources visit the official Common Core website at www.corestandards.org.

Mathematical Practices
☐ Make sense of problems and persevere in solving them.
☐ Reason abstractly and quantitatively.
☐ Construct viable arguments and critique the reasoning of others.
☐ Model with mathematics.
☐ Use appropriate tools strategically.
☐ Attend to precision.
☐ Look for and make use of structure.
☐ Look for and express regularly in repeated reasoning.

Vocabulary
Arithmetic sequence
Boundary line
common difference
continuous graph
Discrete function
Half-plane
Linear equation
Linear function
Linear inequality of 2 variables
Point-slope form
Rate of change
Sequence
Slope
Slope formula
Slope intercept form
Solution
Standard form
Term
x-intercept
y-intercept

Research-based Instructional Practices
• Actively seek out and encourage student’s thoughts and points of view, and allow students to make choices.
• Explicitly connect lesson content to students’ lives.
• Encourage meaningful peer interactions and promote peer conversations.
• Give students the floor. Avoid dominating classroom conversations by maintaining a balance of teacher and student talk.
• Help students consider different perspectives. Present and encourage multiple and varied points of view.
• Convey how and when to use concepts and procedures and the difference between them.
• Assist your students to define and refine their understanding by presenting an assortment of examples and contrasting non-examples that illustrate the concept or procedure.
• Offer extended opportunities for students to examine and analyze information. Engage students in higher-order thinking skills by giving them chances to explore data and evidence.
• Provide opportunities for students to make predictions and brainstorm consequences. Encourage them to discover and evaluate their own answers.
• Challenge students with open-ended tasks that have a variety of solutions and require students to think about how to use their knowledge in creative ways.
• Help students monitor their own thinking by showing them how you approach a problem and the questions you ask yourself to monitor your own thinking process. Model the process by thinking out loud.
• Help students to think about their own learning by offering opportunities to reflect on, plan, and share their developing thought processes.

Yvonne Caamal Canul
Superintendent
Mark Coscarella, Ed.D.
Deputy Superintendent
Camela Diaz
Interim Assistant Director for Student Learning
Delsa Chapman
Executive Director for Student Learning

Many thanks to... the teachers and administrators who helped develop and revise the Pacing Guides.

This Mathematics Pacing Guide has been aligned to the Go Math! Series for this grade level. Please teach the units and concepts with fidelity in the order that they have been laid out.

We will review the pacing guide at the end of the year and adjust accordingly.

The following tips may be helpful as you use the Pacing Guide:
• Introduce 9-week content skills according to the Pacing Guide.
• Incorporate the research-based instructional practices listed on the back.
• Once a skill is mastered, continue to practice it.
• Continue to reinforce skills and concepts throughout the year until mastery is achieved.
• Become familiar with sequencing at previous and subsequent grade levels.
• The website, www.corestandards.org, can be used to find more information and to better understand Common Core State Standards.
• An electronic version of the Pacing Guides can be found on the Lansing School District homepage www.lansingschools.net under Links.
<table>
<thead>
<tr>
<th>Unit 2: Understanding Functions (Continued)</th>
<th>Unit 3: Linear Functions, Equations, and Inequalities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module 4: Patterns and Sequences</td>
<td>Module 5: Linear Functions</td>
</tr>
<tr>
<td>4.1: F.IF.3 Identifying and Graphing Sequences</td>
<td>5.1: F.LE.1 Understanding Linear Functions</td>
</tr>
<tr>
<td>I CAN define a sequence and show its relation to a function.</td>
<td>I CAN define a linear function.</td>
</tr>
<tr>
<td>4.2: F.IF.2 Constructing Arithmetic Sequences</td>
<td>5.2: F.IF.7 Using Intercepts</td>
</tr>
<tr>
<td>I CAN write an exponential function from a graph, description, and a table.</td>
<td>I CAN identify and use intercepts in linear relations.</td>
</tr>
<tr>
<td>4.3: F.BF.1 Modeling with Arithmetic Sequences</td>
<td>5.3: F.IF.6 Interpreting Rate of Change and Slope</td>
</tr>
<tr>
<td>I CAN solve real-world situations using an arithmetic sequence.</td>
<td>I CAN interpret and calculate the average rate of change of a function from a table and a graph.</td>
</tr>
<tr>
<td>Module 6: Forms of Linear Equations</td>
<td>Module 7: Linear Equations and Inequalities</td>
</tr>
<tr>
<td>6.1: F.IF.7 Slope-Intercept Form</td>
<td>7.1: A.CED.3 Modeling Linear Relationships</td>
</tr>
<tr>
<td>I CAN represent a linear function in a way that reveals its slope and (y)-intercept.</td>
<td>I CAN model linear relationships given limited information.</td>
</tr>
<tr>
<td>6.2: A.REI.10 Point-Slope Form</td>
<td>7.2: A.REI.11 Using Functions to Solve One-Variable Equations</td>
</tr>
<tr>
<td>I CAN demonstrate that a graph of any equation in two variables is the set of all of its solutions.</td>
<td>I CAN use functions to solve one-variable equations.</td>
</tr>
<tr>
<td>6.3: A.CED.2 Standard Form</td>
<td>7.3: A.REI.12 Linear Inequalities in Two Variables</td>
</tr>
<tr>
<td>I CAN create equations in two or more variables to solve problems.</td>
<td>I CAN write and graph linear inequalities with two variables.</td>
</tr>
<tr>
<td>6.4: F.BF.3 Transforming Linear Functions</td>
<td></td>
</tr>
<tr>
<td>I CAN determine how changes to an original function will change the graph of the functions.</td>
<td></td>
</tr>
<tr>
<td>6.5: F.IF.9 Comparing Properties of Linear Functions</td>
<td></td>
</tr>
<tr>
<td>I CAN compare two functions that are represented in different ways and identify key features.</td>
<td></td>
</tr>
<tr>
<td>Mathematical Practices</td>
<td>Vocabulary</td>
</tr>
<tr>
<td>-------------------------</td>
<td>------------</td>
</tr>
<tr>
<td>Make sense of problems and persevere in solving them.</td>
<td>Absolute value functions</td>
</tr>
<tr>
<td>Reason abstractly and quantitatively.</td>
<td>Absolute value inequalities</td>
</tr>
<tr>
<td>Construct viable arguments and critique the reasoning of others.</td>
<td>Boundary (dashed line vs. solid line)</td>
</tr>
<tr>
<td>Model with mathematics.</td>
<td>Box-plot</td>
</tr>
<tr>
<td>Use appropriate tools strategically.</td>
<td>Categorical vs. Quantitative</td>
</tr>
<tr>
<td>Attend to precision.</td>
<td>Correlation coefficient</td>
</tr>
<tr>
<td>Look for and make use of structure.</td>
<td>Data</td>
</tr>
<tr>
<td>Look for and express regularity in repeated reasoning.</td>
<td>Disjunction</td>
</tr>
</tbody>
</table>

Research-based Instructional Practices

- Actively seek out and encourage student’s thoughts and points of view, and allow students to make choices.
- Explicitly connect lesson content to students’ lives.
- Encourage meaningful peer interactions and promote peer conversations.
- Give students the floor. Avoid dominating classroom conversations by maintaining a balance of teacher and student talk.
- Help students consider different perspectives. Present and encourage multiple and varied points of view.
- Convey how and when to use concepts and procedures and the difference between them.
- Assist your students to define and refine their understanding by presenting an assortment of examples and contrasting non-examples that illustrate the concept or procedure.
- Offer extended opportunities for students to examine and analyze information. Engage students in higher-order thinking skills by giving them chances to explore data and evidence.
- Provide opportunities for students to make predictions and brainstorm consequences. Encourage them to discover and evaluate their own answers.
- Challenge students with open-ended tasks that have a variety of solutions and require students to think about how to use their knowledge in creative ways.
- Help students their own thinking by showing them how you approach a problem and the questions you ask yourself to monitor your own thinking process. Model the process by thinking out loud.
- Help students think about their own learning by offering opportunities to reflect on, plan, and share their developing thought processes.

Mathematics Pacing Guide

This Mathematics Pacing Guide has been aligned to the Go Math! Series for this grade level. Please teach the units and concepts with fidelity in the order that they have been laid out.

We will review the pacing guide at the end of the year and adjust accordingly.

The following tips may be helpful as you use the Pacing Guide:

- Introduce 9-week content skills according to the Pacing Guide.
- Incorporate the research-based instructional practices listed on the back.
- Once a skill is mastered, continue to practice it.
- Continue to reinforce skills and concepts throughout the year until mastery is achieved.
- Become familiar with sequencing at previous and subsequent grade levels.
- The website, www.corestandards.org, can be used to find more information and to better understand Common Core State Standards.
- An electronic version of the Pacing Guides can be found on the Lansing School District homepage www.lansingschools.net under Links.
Algebra I

Mathematics Third Quarter

Unit 4: Statistical Models

<table>
<thead>
<tr>
<th>Module 8: Multi-variable Categorical Data</th>
<th>Module 10: Linear Modeling and Regression</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.1: S.ID.5 Two-way Frequency Tables</td>
<td>10.1: S.ID.6, S.ID.8, S.ID.9, F.LE.5</td>
</tr>
<tr>
<td>☐ I CAN summarize categorical data for two categories.</td>
<td>Scatter Plots and Trend Lines</td>
</tr>
<tr>
<td>8.2: S.ID.5 Relative Frequency</td>
<td>☐ I CAN describe the relationship between two variables and use it to make predictions.</td>
</tr>
<tr>
<td>☐ I CAN recognize possible associations and trends between two categories of categorical data.</td>
<td>10.2: S.ID.6, S.ID.8, F.LE.5</td>
</tr>
<tr>
<td></td>
<td>Fitting a Linear Model to Data</td>
</tr>
<tr>
<td></td>
<td>☐ I CAN use the linear regression function on a graphing calculator to find the line of best fit for a two-variable data set.</td>
</tr>
</tbody>
</table>

Module 9: One-Variable Data Distributions

<table>
<thead>
<tr>
<th>9.1: S.ID.2 Measure of Center and Spread</th>
<th>9.2: S.ID.1, S.ID.2, S.ID.3, N.Q.1 Data Distributions and Outliers</th>
</tr>
</thead>
<tbody>
<tr>
<td>☐ I CAN describe and compare data sets.</td>
<td>☐ I CAN determine which statistics are most affected by outliers, and what shapes the data distribution can have.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>9.3: S.ID.1, S.ID.2, N.Q.1 Histograms and Box Plots</th>
<th>9.4: S.ID.1, S.ID.2, N.Q.1 Normal Distributions</th>
</tr>
</thead>
<tbody>
<tr>
<td>☐ I CAN interpret the comparison data sets using data displays (histograms and box plots).</td>
<td>☐ I CAN use characteristics of a normal distribution to make estimates and probability predictions about the population that the data represents.</td>
</tr>
</tbody>
</table>

Unit 5: Linear Systems and Piecewise-defined Functions

<table>
<thead>
<tr>
<th>Module 11: Solving Systems of Linear Equations</th>
<th>Module 12: Modeling with Linear Systems</th>
</tr>
</thead>
<tbody>
<tr>
<td>☐ I CAN find the solution of a system of linear equations by graphing.</td>
<td>Creating Systems of Linear Equations</td>
</tr>
<tr>
<td>11.2: A.REI.6 Solving Linear Systems by Substitution</td>
<td>☐ I CAN use systems of linear equations to model and solve real-world problems.</td>
</tr>
<tr>
<td>☐ I CAN solve a system of linear equations using substitution.</td>
<td>12.2: A.REI.12, A.CED.3 Graphing Systems of Linear Equations</td>
</tr>
<tr>
<td>11.3: A.REI.6 Solving Linear Systems by Adding or Subtracting</td>
<td>☐ I CAN solve a system of linear inequalities graphically.</td>
</tr>
<tr>
<td>☐ I CAN solve a system of linear equations by adding and subtracting.</td>
<td>12.3: A.CED.3 Modeling with Linear Systems</td>
</tr>
<tr>
<td>11.4: A.REI.5, A.REI.6 Solving Linear Systems by Multiplying First</td>
<td>☐ I CAN use systems of linear equations or inequalities to model and solve contextual problems.</td>
</tr>
<tr>
<td>☐ I CAN solve a system of linear equations by using multiplication and elimination.</td>
<td></td>
</tr>
</tbody>
</table>

Module 13: Piecewise-defined Functions

<table>
<thead>
<tr>
<th>13.1: F.IF.7, F.BF.1 Understanding Piecewise-defined Functions</th>
<th>13.2: F.IF.7, F.BF.3 Absolute Value Function and Transformations</th>
</tr>
</thead>
<tbody>
<tr>
<td>☐ I CAN show how piecewise-defined functions are different from other functions.</td>
<td>☐ I CAN show the effects of parameter changes on the graph of of y = a</td>
</tr>
<tr>
<td>☐ I CAN graph them and write a piecewise-defined function from a graph.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>13.3: A.REI.3, A.REI.11, A.CED.1 Solving Absolute Value Equations</th>
<th>13.4: A.REI.3, A.REI.11, A.CED.1 Solving Absolute Value Inequalities</th>
</tr>
</thead>
<tbody>
<tr>
<td>☐ I CAN solve an absolute value equation graphically and algebraically.</td>
<td>☐ I CAN solve absolute value inequalities graphically and algebraically.</td>
</tr>
</tbody>
</table>
The Mathematics Pacing Guide is based on the Common Core State Standards, and the I CAN statements are tailored to the needs of the students in the Lansing School District. For easy access to the actual state standards as well as supporting information and resources visit the official Common Core website at www.corestandards.org.

Yvonne Caamal Canul
Superintendent

Camela Diaz
Interim Assistant Director for Student Learning

Delsa Chapman
Executive Director for Student Learning

Many thanks to... the teachers and administrators who helped develop and revise the Pacing Guides.

The following tips may be helpful as you use the Pacing Guide:

- Introduce 9-week content skills according to the Pacing Guide.
- Incorporate the research-based instructional practices listed on the back.
- Once a skill is mastered, continue to practice it.
- Continue to reinforce skills and concepts throughout the year until mastery is achieved.
- Become familiar with sequencing at previous and subsequent grade levels.
- The website, www.corestandards.org, can be used to find more information and to better understand Common Core State Standards.
- An electronic version of the Pacing Guides can be found on the Lansing School District homepage www.lansingschools.net under Links.

We will review the pacing guide at the end of the year and adjust accordingly.

This Mathematics Pacing Guide has been aligned to the Go Math! Series for this grade level. Please teach the units and concepts with fidelity in the order that they have been laid out.

Introduction to Your Mathematics Pacing Guide

Algebra I • Fourth Quarter

Pacing Guide

Go Math! Units 6 and 7, Modules 14-18

Mathematics

Lansing School District

Vocabulary

- Asymptote
- Exponential growth vs. decay
- Binomial
- Common ratio
- Constant
- Constant change vs. constant percent change
- Degree
- Difference of two squares
- Discrete
- Distributive property
- Domain
- End behavior
- Equating exponents
- Explicit vs. recursive rules
- Exponential function
- Exponential regression
- FOIL
- Geometric sequence
- Infinity
- Leading
- Monomial
- Multivariable expressions
- Perfect square trinomial
- Polynomial
- Product of power property
- Radical
- Range
- Rational exponent
- Standard form
- Subscript
- Vertical compression
- Vertical stretch
- Trinomial
- Zero pairs

Research-based Instructional Practices

- Actively seek out and encourage student's thoughts and points of view, and allow students to make choices.
- Explicitly connect lesson content to students’ lives.
- Encourage meaningful peer interactions and promote peer conversations.
- Give students the floor. Avoid dominating classroom conversations by maintaining a balance of teacher and student talk.
- Help students consider different perspectives. Present and encourage multiple and varied points of view.
- Convey how and when to use concepts and procedures and the difference between them.
- Assist your students to define and refine their understanding by presenting an assortment of examples and contrasting non-examples that illustrate the concept or procedure.
- Offer extended opportunities for students to examine and analyze information. Engage students in higher-order thinking skills by giving them chances to explore data and evidence.
- Provide opportunities for students to make predictions and brainstorm consequences. Encourage them to discover and evaluate their own answers.
- Challenge students with open-ended tasks that have a variety of solutions and require students to think about how to use their knowledge in creative ways.
- Help students monitor their own thinking by showing them how you approach a problem and the questions you ask yourself to monitor your own thinking process. Model the process by thinking out loud.
- Help students to think about their own learning by offering opportunities to reflect on, plan, and share their developing thought processes.

Mathematical Practices

☐ Make sense of problems and persevere in solving them.
☐ Reason abstractly and quantitatively.
☐ Construct viable arguments and critique the reasoning of others.
☐ Model with mathematics.
☐ Use appropriate tools strategically.
☐ Attend to precision.
☐ Look for and make use of structure.
☐ Look for and express regularity in repeated reasoning.
Algebra I

Unit 6: Exponential Relationships

Module 14: Rational Exponents and Radicals

14.1: N.RN.1, N.RN.2
Understanding Rational Exponents and Radicals
- **I CAN** relate radicals to rational exponents.

14.2: N.RN.2, N.RN.3, A.SSE.1
Simplify Expressions with Rational Exponents and Radicals
- **I CAN** write a radical expression as an expression of a rational exponent.

Module 15: Geometric Sequences and Exponential Functions

15.1: F.LE.2, F.LE.3
Understanding Geometric Sequences
- **I CAN** relate the terms of a geometric sequence using a common ratio.

15.2: F.BA.1, F.LE.2, F.BA.2
Constructing Geometric Sequences
- **I CAN** write a geometric sequence using recursive and explicit rules.

15.3: F.LE.2, F.IF.2, F.IF.7
Constructing Exponential Functions
- **I CAN** understand discrete exponential functions and how to represent them.

15.4: F.IF.7, F.IF.8
Graphing Exponential Functions
- **I CAN** graph an exponential function of the form \(f(x) = ab^x \).

15.5: F.BF.3, F.IF.9
Transforming Exponential Functions
- **I CAN** determine the effect changing \(a \) and/or \(b \) have on the graph of \(f(x) = ab^x \).

Module 16: Exponential Equations and Models

16.1: A.CED.1, A.SSE.3, A.REI.11, F.BF.1, F.LE.2
Using Graphs and Properties to Solve Equations with Exponents
- **I CAN** solve equations involving variable exponents.

16.2: F.IF.7, F.IF.5, F.BF.1, F.LE.1, F.LE.2
Modeling Exponential Growth and Decay
- **I CAN** use exponential functions to model the increase or decrease of a quantity over time.

16.3: S.ID.6, A.CED.2, A.REI.11, F.LE.1
Using Exponential Regression Models
- **I CAN** use exponential regression to model data.

16.4: F.LE.1, F.LE.3
Comparing Linear and Exponential Models
- **I CAN** recognize when to use a linear model vs. an exponential model.

Module 17: Adding and Subtracting Polynomials

17.1: A.SSE.1, A.SSE.2, A.APR.1, A.CED.1
Understanding Polynomial Expressions
- **I CAN** classify and simplify polynomials.

17.2: A.APR.1, A.SSE.1, A.CED.1
Adding Polynomial Expressions
- **I CAN** add polynomials.

17.3: A.APR.1, A.SSE.1, A.CED.1
Subtracting Polynomial Expressions
- **I CAN** subtract polynomials.

Module 18: Multiplying Polynomials

18.1: A.APR.1, A.SSE.1, A.CED.1
Multiplying Polynomial Expressions by Monomials
- **I CAN** multiply polynomials by monomials.

18.2: A.APR.1, A.SSE.1, A.CED.1
Multiplying Polynomial Expressions
- **I CAN** multiply binomials by polynomials.

18.3: A.APR.1, A.SSE.1, A.CED.1
Special Products of Binomials
- **I CAN** find special products of binomials.