The Science Pacing Guide is based on the Next Generation Science Standards, and the I CAN statements are tailored to the needs of the students in the Lansing School District. For easy access to the actual state standards as well as supporting information and resources visit the official Next Generation Science Standards website at: www.nextgenscience.org.

The Science Pacing Guide creates a realistic time frame for instruction and assessment. They establish paced, student learning expectations and provide a starting point for the implementation of the Michigan State Standards.

The following tips may be helpful as you begin using the Pacing Guide:

• Introduce 9-week content skills according to the Pacing Guide.
• Once a skill is mastered, continue to practice it.
• Continue to reinforce skills and concepts throughout the year until mastery is achieved.
• Skills can be introduced earlier than listed, but no later, and can be assessed at any point after introduction.
• Compare your current pace to the Pacing Guide and adjust as needed.
• Become familiar with sequencing at previous and subsequent grade levels.
• The website, www.nextgenscience.org, can be used to find more information and to better understand Michigan State Standards.
• An electronic version of the Pacing Guides can be found on the Lansing School District homepage www.lansingschools.net under Quicklinks.

Vocabulary

vibrate
investigate
plan
observation
construct
illuminated,
beam of light
materials
design
communicating

Crosscutting Concepts

1-PS4-1 1-PS4-2 1-PS4-3
Cause and Effect:
Simple tests can be designed to gather evidence to support or refute student ideas about causes.

1-PS4-4
Influence of Engineering, Technology, and Science, on Society and the Natural World:
People depend on various technologies in their lives; human life would be very different without technology.

Resources *

* List your recommended texts and resources - we will be collecting them at the end of the year.
<table>
<thead>
<tr>
<th>Grade 1</th>
<th>Science</th>
<th>First Quarter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Waves and Their Applications in Technologies for Information 1-PS4-1</td>
<td>Waves and Their Applications in Technologies for Information 1-PS4-2</td>
<td>Waves and Their Applications in Technologies for Information 1-PS4-3</td>
</tr>
<tr>
<td>I CAN STATEMENT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>☐ I CAN plan an investigation.</td>
<td>☐ I CAN show that sound can make something move.</td>
<td>☐ I CAN plan and do an investigation to find out what happens when I put an objects made of different materials in a beam of light.</td>
</tr>
<tr>
<td>☐ I CAN do my investigation.</td>
<td>☐ I CAN make observations to prove that objects can only be seen in the dark when there is light.</td>
<td>☐ I CAN plan and do an investigation to find out what happens when I put an objects made of different materials in a beam of light.</td>
</tr>
<tr>
<td>☐ I CAN show that vibrating materials can make a sound.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Core Idea</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wave Properties</td>
<td>Electromagnetic Radiation</td>
<td>Information Technologies and Instrumentation</td>
</tr>
<tr>
<td>Sound can make matter vibrate, and vibrating matter can make sound.</td>
<td>Objects can be seen if light is available to illuminate them or if they give off their own light.</td>
<td>People also use a variety of devices to communicate (send and receive information) over long distances.</td>
</tr>
<tr>
<td>Standard</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plan and conduct investigations to provide evidence that vibrating materials can make sound and that sound can make materials vibrate.</td>
<td>Use tools and materials to design and build a device that uses light or sound to solve the problem of communicating over a distance.</td>
<td></td>
</tr>
<tr>
<td>Clarification Statement: Examples of vibrating materials that make sound could include tuning forks and plucking a stretched string. Examples of how sound can make matter vibrate could include holding a piece of paper near a speaker making sound and holding an object near a vibrating tuning fork.</td>
<td>Clarification Statement: Examples of materials could include those that are transparent (such as clear plastic), translucent (such as wax paper), opaque (such as cardboard), and reflective (such as a mirror).</td>
<td></td>
</tr>
<tr>
<td>Science and Engineering Practices</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Planning and Carrying Out Investigations</td>
<td>Constructing Explanations and Designing Solutions</td>
<td>Planning and Carrying Out Investigations</td>
</tr>
<tr>
<td>Planning and carrying out investigations to answer questions or test solutions to problems in K–2 builds on prior experiences and progresses to simple investigations, based on fair tests, which provide data to support explanations or design solutions.</td>
<td>Constructing explanations and designing solutions in K–2 builds on prior experiences and progresses to the use of evidence and ideas in constructing evidence-based accounts of natural phenomena and designing solutions.</td>
<td>Planning and carrying out investigations to answer questions or test solutions to problems in K–2 builds on prior experiences and progresses to simple investigations, based on fair tests, which provide data to support explanations or design solutions.</td>
</tr>
<tr>
<td>▶ Plan and conduct investigations collaboratively to produce data to serve as the basis for evidence to answer a question.</td>
<td>▶ Make observations (firsthand or from media) to construct an evidence-based account for natural phenomena.</td>
<td>▶ Make observations (firsthand or from media) to construct an evidence-based account for natural phenomena.</td>
</tr>
</tbody>
</table>
The Science Pacing Guide is based on the Next Generation Science Standards, and the I CAN statements are tailored to the needs of the students in the Lansing School District. For easy access to the actual state standards as well as supporting information and resources visit the official Next Generation Science Standards website at: www.nextgenscience.org.

First Grade • Second Quarter

Pacing Guide

Introduction to Your Science Pacing Guide

Pacing Guides create a realistic time frame for instruction and assessment. They establish paced, student learning expectations and provide a starting point for the implementation of the Michigan State Standards.

The following tips may be helpful as you begin using the Pacing Guide:

- Introduce 9-week content skills according to the Pacing Guide.
- Once a skill is mastered, continue to practice it.
- Continue to reinforce skills and concepts throughout the year until mastery is achieved.
- Skills can be introduced earlier than listed, but no later, and can be assessed at any point after introduction.
- Compare your current pace to the Pacing Guide and adjust as needed.
- Become familiar with sequencing at previous and subsequent grade levels.
- The website, www.nextgenscience.org, can be used to find more information and to better understand Michigan State Standards.
- An electronic version of the Pacing Guides can be found on the Lansing School District homepage www.lansingschools.net under Quicklinks.

Vocabulary

predict
relate
seasonal patterns
data

Crosscutting Concepts

1-ESS1-1 1-ESS1-2

Patterns

Patterns in the natural world can be observed, used to describe phenomena, and used as evidence.

Resources *

* List your recommended texts and resources - we will be collecting them at the end of the year.

Yvonne Caamal Canul
Superintendent

Mark Coscarella, Ed.D.
Deputy Superintendent

Mara Lud
Executive Director of Instructional Learning

Delsa Chapman
Director of Magnet Programs & High Schools

Many thanks to...
the teachers and administrators who helped develop and revise the pacing guides.
Core Idea

The Universe and its Stars
Patterns of the motion of the sun, moon, and stars in the sky can be observed, described, and predicted.

Earth and the Solar System
Seasonal patterns of sunrise and sunset can be observed, described, and predicted.

Standard

Use observations of the sun, moon, and stars to describe patterns that can be predicted.
Clarification Statement: Examples of patterns could include that the sun and moon appear to rise in one part of the sky, move across the sky, and set; and stars other than our sun are visible at night but not during the day.

Make observations at different times of year to relate the amount of daylight to the time of year.
Clarification Statement: Emphasis is on relative comparisons of the amount of daylight in the winter to the amount in the spring or fall.

Science and Engineering Practices

Analyzing and Interpreting Data
Analyzing data in K–2 builds on prior experiences and progresses to collecting, recording, and sharing observations.
- Use observations (firsthand or from media) to describe patterns in the natural world in order to answer scientific questions.

Planning and Carrying Out Investigations
Planning and carrying out investigations to answer questions or test solutions to problems in K–2 builds on prior experiences and progresses to more formal investigations, based on fair tests, which provide evidence to support an explanation or design a solution.
- Make observations (firsthand or from media) to collect data that can be used to make comparisons.
The Science Pacing Guide is based on the Next Generation Science Standards, and the I CAN statements are tailored to the needs of the students in the Lansing School District. For easy access to the actual state standards as well as supporting information and resources visit the official Next Generation Science Standards website at: www.nextgenscience.org.

Many thanks to... the teachers and administrators who helped develop and revise the pacing guides.

Delsa Chapman
Director of Magnet Programs & High Schools

Yvonne Caamal Canul
Superintendent

Mark Coscarella, Ed.D.
Deputy Superintendent

Mara Lud
Executive Director of Instructional Learning

Introduction to Your Science Pacing Guide

• Introduce 9-week content skills according to the Pacing Guide.
• Once a skill is mastered, continue to practice it.
• Continue to reinforce skills and concepts throughout the year until mastery is achieved.
• Skills can be introduced earlier than listed, but no later, and can be assessed at any point after introduction.
• Compare your current pace to the Pacing Guide and adjust as needed.
• Become familiar with sequencing at previous and subsequent grade levels.
• The website, www.nextgenscience.org, can be used to find more information and to better understand Michigan State Standards.
• An electronic version of the Pacing Guides can be found on the Lansing School District homepage www.lansingschools.net under Quicklinks.

The Science Pacing Guide is based on the Next Generation Science Standards, and the I CAN statements are tailored to the needs of the students in the Lansing School District. For easy access to the actual state standards as well as supporting information and resources visit the official Next Generation Science Standards website at: www.nextgenscience.org.

Pacing Guides create a realistic time frame for instruction and assessment. They establish paced, student learning expectations and provide a starting point for the implementation of the Michigan State Standards.

The following tips may be helpful as you begin using the Pacing Guide:

• Introduce 9-week content skills according to the Pacing Guide.
• Once a skill is mastered, continue to practice it.
• Continue to reinforce skills and concepts throughout the year until mastery is achieved.
• Skills can be introduced earlier than listed, but no later, and can be assessed at any point after introduction.
• Compare your current pace to the Pacing Guide and adjust as needed.
• Become familiar with sequencing at previous and subsequent grade levels.
• The website, www.nextgenscience.org, can be used to find more information and to better understand Michigan State Standards.
• An electronic version of the Pacing Guides can be found on the Lansing School District homepage www.lansingschools.net under Quicklinks.

Pacing Guides create a realistic time frame for instruction and assessment. They establish paced, student learning expectations and provide a starting point for the implementation of the Michigan State Standards. The following tips may be helpful as you begin using the Pacing Guide:

• Introduce 9-week content skills according to the Pacing Guide.
• Once a skill is mastered, continue to practice it.
• Continue to reinforce skills and concepts throughout the year until mastery is achieved.
• Skills can be introduced earlier than listed, but no later, and can be assessed at any point after introduction.
• Compare your current pace to the Pacing Guide and adjust as needed.
• Become familiar with sequencing at previous and subsequent grade levels.
• The website, www.nextgenscience.org, can be used to find more information and to better understand Michigan State Standards.
• An electronic version of the Pacing Guides can be found on the Lansing School District homepage www.lansingschools.net under Quicklinks.
<table>
<thead>
<tr>
<th>Grade 1 Science</th>
<th>Third Quarter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Core Idea</td>
<td>Notes</td>
</tr>
<tr>
<td>Standard</td>
<td></td>
</tr>
<tr>
<td>Science and Engineering Practices</td>
<td></td>
</tr>
</tbody>
</table>

I CAN STATEMENT

☐ I CAN explain how plants and animals will grow up to look in some ways like their parent.

☐ I CAN investigate and tell about likenesses and differences among the same kind of a plant or animal.

Core Idea

A: Inheritance of Traits
Young animals are very much, but not exactly like, their parents. Plants also are very much, but not exactly, like their parents.

B: Variation of Traits
Individuals of the same kind of plant or animal are recognizable as similar but can also vary in many ways.

Standard

Make observations to construct an evidence-based account that young plants and animals are like, but not exactly like, their parents.

Clarification Statement: Examples of patterns could include features plants or animals share. Examples of observations could include leaves from the same kind of plant are the same shape but can differ in size; and, a particular breed of dog looks like its parents but is not exactly the same. Assessment Boundary: Assessment does not include inheritance or animals that undergo metamorphosis or hybrids.

Science and Engineering Practices

Constructing Explanations and Designing Solutions

Constructing explanations and designing solutions in K–2 builds on prior experiences and progresses to the use of evidence and ideas in constructing evidence-based accounts of natural phenomena and designing solutions.

- Make observations (firsthand or from media) to construct an evidence-based account for natural phenomena.
The Science Pacing Guide is based on the Next Generation Science Standards, and the I CAN statements are tailored to the needs of the students in the Lansing School District. For easy access to the actual state standards as well as supporting information and resources visit the official Next Generation Science Standards website at: www.nextgenscience.org.

Many thanks to... the teachers and administrators who helped develop and revise the pacing guides.

Vocabulary
- mimicking
- external parts
- survive
- off-spring
- predators
- environment

Crosscutting Concepts

1-LS1-1 Structure and Function
The shape and stability of structures of natural and designed objects are related to their function(s).

1-LS1-2 Patterns
Patterns in the natural and human designed world can be observed and used as evidence.

Resources *

* List your recommended texts and resources - we will be collecting them at the end of the year.

First Grade • Fourth Quarter

Pacing Guides create a realistic time frame for instruction and assessment. They establish paced, student learning expectations and provide a starting point for the implementation of the Michigan State Standards.

The following tips may be helpful as you begin using the Pacing Guide:
- Introduce 9-week content skills according to the Pacing Guide.
- Once a skill is mastered, continue to practice it.
- Continue to reinforce skills and concepts throughout the year until mastery is achieved.
- Skills can be introduced earlier than listed, but no later, and can be assessed at any point after introduction.
- Compare your current pace to the Pacing Guide and adjust as needed.
- Become familiar with sequencing at previous and subsequent grade levels.
- The website, www.nextgenscience.org, can be used to find more information and to better understand Michigan State Standards.
- An electronic version of the Pacing Guides can be found on the Lansing School District homepage www.lansingschools.net under Quicklinks.
Grade 1 Science

Fourth Quarter

<table>
<thead>
<tr>
<th>From Molecules to Organisms: Structures and Processes 1-LS1-1</th>
<th>From Molecules to Organisms: Structures and Processes 1-LS1-2</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>I CAN STATEMENT</td>
<td>I CAN STATEMENT</td>
<td></td>
</tr>
<tr>
<td>☐ I CAN describe a human problem that will be solved.</td>
<td>☐ I CAN explain that plants and animals have young.</td>
<td></td>
</tr>
<tr>
<td>☐ I CAN design a solution by telling what helps the plant/animal grow and survive and how they use information they get from the world around them.</td>
<td>☐ I CAN tell how animal parents help their young to survive.</td>
<td></td>
</tr>
<tr>
<td>☐ I CAN use materials to solve the problem and will copy the way an animal or a plant survives.</td>
<td>☐ I CAN explain if my plan worked.</td>
<td></td>
</tr>
</tbody>
</table>

Core Idea

Structure and Function

All organisms have external parts. Different animals use their body parts in different ways to see, hear, grasp objects, protect themselves, move from place to place, and seek, find, and take in food, water, and air. Plants also have different parts (roots, stems, leaves, flowers, fruits) that help them survive and grow.

Information Processing

Animals have body parts that capture and convey different kinds of information needed for growth and survival. Animals respond to these inputs with behaviors that help them survive. Plants also respond to some external inputs.

Standard

Use materials to design a solution to a human problem by mimicking how plants and/or animals use their external parts to help them survive, grow, and meet their needs.

Clarification Statement: Examples of human problems that can be solved by mimicking plant or animal solutions could include designing clothing or equipment to protect bicyclists by mimicking turtle shells, and animal scales; stabilizing structures by mimicking animal tails and roots on plants; keeping out intruders by mimicking thorns on branches and animal quills; and, detecting intruders by mimicking eyes and ears.

Read texts and use media to determine patterns in behavior of parents and offspring that help offspring survive.

Clarification Statement: Examples of patterns of behaviors could include the signals that offspring make (such as crying, cheeping, and other vocalizations) and the responses of the parents (such as feeding, comforting, and protecting the offspring).

Science and Engineering Practices

Constructing Explanations and Designing Solutions

Constructing explanations and designing solutions in K–2 builds on prior experiences and progresses to the use of evidence and ideas in constructing evidence-based accounts of natural phenomena and designing solutions.

- Use materials to design a device that solves a specific problem or a solution to a specific problem.

Obtaining, Evaluating, and Communicating Information

Obtaining, evaluating, and communicating information in K–2 builds on prior experiences and uses observations and texts to communicate new information.

- Read grade-appropriate texts and use media to obtain scientific information to determine patterns in the natural world.