Crosscutting Concepts

<table>
<thead>
<tr>
<th>Concept</th>
<th>Standard</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>5-PS3-1</td>
<td>Energy and Matter</td>
<td>Energy can be transferred in various ways and between objects.</td>
</tr>
<tr>
<td>5-LS1-1</td>
<td>Energy and Matter</td>
<td>Matter is transported into, out of, and within systems.</td>
</tr>
<tr>
<td>5-LS2-1</td>
<td>Systems and System Models</td>
<td>A system can be described in terms of its components and their interactions.</td>
</tr>
</tbody>
</table>

Resources *

* List your recommended texts and resources - we will be collecting them at the end of the year.

Yvonne Caamal Canul
Superintendent

Mark Coscarella, Ed.D.
Deputy Superintendent

Mara Lud
Executive Director of Instructional Learning

Delsa Chapman
Director of Magnet Programs & High Schools

Many thanks to...
the teachers and administrators who helped develop and revise the pacing guides.

The Science Pacing Guide is based on the Next Generation Science Standards, and the I CAN statements are tailored to the needs of the students in the Lansing School District. For easy access to the actual state standards as well as supporting information and resources visit the official Next Generation Science Standards website at: www.nextgenscience.org.

Pacing Guides create a realistic time frame for instruction and assessment. They establish paced, student learning expectations and provide a starting point for the implementation of the Michigan State Standards.

The following tips may be helpful as you begin using the Pacing Guide:

- Introduce 9-week content skills according to the Pacing Guide.
- Once a skill is mastered, continue to practice it.
- Continue to reinforce skills and concepts throughout the year until mastery is achieved.
- Skills can be introduced earlier than listed, but no later, and can be assessed at any point after introduction.
- Compare your current pace to the Pacing Guide and adjust as needed.
- Become familiar with sequencing at previous and subsequent grade levels.
- The website, www.nextgenscience.org, can be used to find more information and to better understand Michigan State Standards.
- An electronic version of the Pacing Guides can be found on the Lansing School District homepage www.lansingschools.net under Quicklinks.
<table>
<thead>
<tr>
<th>Grade 5</th>
<th>Science</th>
<th>First Quarter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy 5-PS3-1</td>
<td>From Molecules to Organisms: Structures and Processes 5-LS1-1</td>
<td>Ecosystems: Interactions, Energy, and Dynamics 5-LS2-1</td>
</tr>
</tbody>
</table>

I CAN STATEMENT

- **Energy 5-PS3-1**
 - I CAN trace the energy that animals use back to the sun.
 - I CAN argue that plants don’t need soil to grow.
 - I CAN explain how plants are the origin for food that sustains life.
 - I CAN argue that, without plants, most life on Earth would vanish.

- **Organization for Matter and Energy Flow in Organisms**
 - Plants acquire their material for growth chiefly from air and water.
 - I CAN trace the energy that animals use back to the sun.
 - I CAN explain how plants are the origin for food that sustains life.
 - I CAN argue that, without plants, most life on Earth would vanish.

Core Idea

Energy in Chemical Processes and Everyday Life

The energy released [from] food was once energy from the sun that was captured by plants in the chemical process that forms plant matter (from air and water).

Organization for Matter and Energy Flow in Organisms

Plants acquire their material for growth chiefly from air and water.

Interdependent Relationships in Ecosystems

The food of almost any kind of animal can be traced back to plants. Organisms are related in food webs in which some animals eat plants for food and other animals eat the animals that eat plants.

A healthy ecosystem is one in which multiple species of different types are each able to meet their needs in a relatively stable web of life. Newly introduced species can damage the balance of an ecosystem.

Standard

Use models to describe that energy in animals’ food (used for body repair, growth, motion, and to maintain body warmth) was once energy from the sun.

Clarification Statement: Examples of models could include diagrams, and flow charts.

Support an argument that plants get the materials they need for growth chiefly from air and water.

Clarification Statement: Emphasis is on the idea that plant matter comes mostly from air and water, not from the soil.

Develop a model to describe the movement of matter among plants, animals, decomposers, and the environment.

Clarification Statement: Emphasis is on the idea that matter that is not food (air, water, decomposed materials in soil) is changed by plants into matter that is food.

Science and Engineering Practices

Developing and Using Models

Modeling in 3–5 builds on K–2 experiences and progresses to building and revising simple models and using models to represent events and design solutions.

- Use models to describe phenomena.

Engaging in Argument from Evidence

Engaging in argument from evidence in 3–5 builds on K–2 experiences and progresses to critiquing the scientific explanations or solutions proposed by peers by citing relevant evidence about the natural and designed world(s).

- Support an argument with evidence, data, or a model.

Developing and Using Models

Modeling in 3–5 builds on K–2 models and progresses to building and revising simple models and using models to represent events and design solutions.

- Develop a model to describe phenomena.
The Science Pacing Guide is based on the Next Generation Science Standards, and the I CAN statements are tailored to the needs of the students in the Lansing School District. For easy access to the actual state standards as well as supporting information and resources visit the official Next Generation Science Standards website at: www.nextgenscience.org.

Many thanks to... the teachers and administrators who helped develop and revise the pacing guides.

The following tips may be helpful as you begin using the Pacing Guide:

- Introduce 9-week content skills according to the Pacing Guide.
- Once a skill is mastered, continue to practice it.
- Continue to reinforce skills and concepts throughout the year until mastery is achieved.
- Skills can be introduced earlier than listed, but no later, and can be assessed at any point after introduction.
- Compare your current pace to the Pacing Guide and adjust as needed.
- Become familiar with sequencing at previous and subsequent grade levels.
- The website, www.nextgenscience.org, can be used to find more information and to better understand Michigan State Standards.
- An electronic version of the Pacing Guides can be found on the Lansing School District homepage www.lansingschools.net under Quicklinks.

Crosscutting Concepts

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>5-PS1-1</td>
<td>Scale, Proportion, and Quantity</td>
<td>Natural objects exist from the very small to the immensely large. Cause and effect relationships are routinely identified, tested, and used to explain change.</td>
</tr>
<tr>
<td>5-PS1-3</td>
<td>Scale, Proportion, and Quantity</td>
<td>Standard units are used to measure and describe physical quantities such as weight, time, temperature, and volume.</td>
</tr>
<tr>
<td>5-PS1-4</td>
<td>Cause and Effect</td>
<td>Cause and effect relationships are routinely identified, tested, and used to explain change.</td>
</tr>
</tbody>
</table>

Resources *

- List your recommended texts and resources - we will be collecting them at the end of the year.
<table>
<thead>
<tr>
<th>Models to Describe Minute Particles 5-PS1-1</th>
<th>Matter Conservation 5-PS1-2</th>
<th>Material Identification Using Measurements 5-PS1-3</th>
<th>Mixing of Two or More Substances 5-PS1-4</th>
<th>Experiment Design 3-5-ETS1-3</th>
</tr>
</thead>
<tbody>
<tr>
<td>I CAN STATEMENT</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>☐ I CAN make a model describing the relative sizes of particles.</td>
<td>☐ I CAN use a scale to determine that heating, cooling, or mixing substances will not change the weight of the substance.</td>
<td>☐ I CAN use different techniques to identify and measure substances based on their unique properties.</td>
<td>☐ I CAN conduct an investigation to determine whether the mixing of two or more substances results in new substances.</td>
<td>☐ I CAN plan and test using controlled variables so a model design can be improved.</td>
</tr>
<tr>
<td>Core Idea</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Structure and Properties of Matter Matter of any type can be subdivided into particles that are too small to see, but even then the matter still exists and can be detected by other means. A model showing that gases are made from matter particles that are too small to see and are moving freely around in space can explain many observations, including the inflation and shape of a balloon and the effects of air on larger particles or objects.</td>
<td>Structure and Properties of Matter The amount (weight) of matter is conserved when it changes form, even in transitions in which it seems to vanish.</td>
<td>Structure and Properties of Matter Measurements of a variety of properties can be used to identify materials. (Boundary: At this grade level, mass and weight are not distinguished, and no attempt is made to define the unseen particles or explain the atomic-scale mechanism of evaporation and condensation.)</td>
<td>Chemical Reactions When two or more different substances are mixed, a new substance with different properties may be formed. No matter what reaction or change in properties occurs, the total weight of the substances does not change. (Boundary: Mass and weight are not distinguished at this grade level.)</td>
<td>Optimizing the Design Solution Different solutions need to be tested in order to determine which of them best solves the problem, given the criteria and the constraints.</td>
</tr>
<tr>
<td>Standard</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Develop a model to describe that matter is made of particles too small to be seen.</td>
<td>Measure and graph quantities to provide evidence that regardless of the type of change that occurs when heating, cooling, or mixing substances, the total weight of matter is conserved.</td>
<td>Make observations and measurements to identify materials based on their properties.</td>
<td>Conduct an investigation to determine whether the mixing of two or more substances results in new substances.</td>
<td>Plan and carry out fair tests in which variables are controlled and failure points are considered to identify aspects of a model or prototype that can be improved.</td>
</tr>
<tr>
<td>Science and Engineering Practices</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Developing and Using Models Modeling in 3–5 builds on K–2 experiences and progresses to building and revising simple models and using models to represent events and design solutions. Use models to describe phenomena.</td>
<td>Planning and Carrying Out Investigations Planning and carrying out investigations to answer questions or test solutions to problems in 3–5 builds on K–2 experiences and progresses to extending investigations that control variables and provide evidence to support explanations or design solutions. Conduct an investigation collaboratively to produce data to serve as the basis for evidence, using fair tests in which variables are controlled and the number of trials considered. Make observations and measurements to produce data to serve as the basis for evidence for an explanation of a phenomenon.</td>
<td>Using Mathematics and Computational Thinking Mathematical and computational thinking in 3–5 builds on K–2 experiences and progresses to extending quantitative measurements to a variety of physical properties and using computation and mathematics to analyze data and compare alternative design solutions. Measure and graph quantities such as weight to address scientific and engineering questions and problems. Recognize volume as an attribute of solid figures and understand concepts of volume measurement. Measure volumes by counting unit cubes, using cubic cm, cubic in, cubic ft, and improvised units.</td>
<td>Planning and Carrying Out Investigations Planning and carrying out investigations to answer questions or test solutions to problems in 3–5 builds on K–2 experiences and progresses to include investigations that control variables and provide evidence to support explanations or design solutions. Conduct an investigation collaboratively to produce data to serve as the basis for evidence, using fair tests in which variables are controlled and the number of trials considered.</td>
<td>Constrcuting Explanations and Designing Solutions Research on a problem should be carried out before beginning to design a solution. Testing a solution involves investigating how well it performs under a range of likely conditions. At whatever stage, communicating with peers about proposed solutions is an important part of the design process, and shared ideas can lead to improved designs. Tests are often designed to identify failure points or difficulties, which suggest the elements of the design that need to be improved.</td>
</tr>
</tbody>
</table>
The Science Pacing Guide is based on the Next Generation Science Standards, and the I CAN statements are tailored to the needs of the students in the Lansing School District. For easy access to the actual state standards as well as supporting information and resources visit the official Next Generation Science Standards website at: www.nextgenscience.org.

Pacing Guides create a realistic time frame for instruction and assessment. They establish paced, student learning expectations and provide a starting point for the implementation of the Michigan State Standards.

The following tips may be helpful as you begin using the Pacing Guide:

• Introduce 9-week content skills according to the Pacing Guide.
• Once a skill is mastered, continue to practice it.
• Continue to reinforce skills and concepts throughout the year until mastery is achieved.
• Skills can be introduced earlier than listed, but no later, and can be assessed at any point after introduction.
• Compare your current pace to the Pacing Guide and adjust as needed.
• Become familiar with sequencing at previous and subsequent grade levels.
• The website, www.nextgenscience.org, can be used to find more information and to better understand Michigan State Standards.
• An electronic version of the Pacing Guides can be found on the Lansing School District homepage www.lansingschools.net under Quicklinks.
<table>
<thead>
<tr>
<th>Grade 5</th>
<th>Science</th>
<th>Third Quarter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Earth’s Systems 5-ESS2-1</td>
<td>Earth’s Systems 5-ESS2-2</td>
<td>Earth and Human Activity 5-ESS3-1</td>
</tr>
</tbody>
</table>

I CAN STATEMENT

- **☐ I CAN** demonstrate the connection between land features/plants and animals/water and air.
- **☐ I CAN** determine and compare the amounts of salt water, frozen water (ice/snow), and fresh water (drinkable or not) available on earth.
- **☐ I CAN** identify ways that Lansing/Ingham County/Michigan uses science knowledge to reduce our need for natural resources as well as to protect our environment.

Core Idea

Earth Materials and Systems

Earth’s major systems are the geosphere (solid and molten rock, soil, and sediments), the hydrosphere (water and ice), the atmosphere (air), and the biosphere (living things, including humans). These systems interact in multiple ways to affect Earth’s surface materials and processes. The ocean supports a variety of ecosystems and organisms, shapes landforms, and influences climate. Winds and clouds in the atmosphere interact with the landforms to determine patterns of weather.

The Roles of Water in Earth’s Surface Processes

Nearly all of Earth’s available water is in the ocean. Most fresh water is in glaciers or underground; only a tiny fraction is in streams, lakes, wetlands, and the atmosphere.

Human Impacts on Earth Systems

Human activities in agriculture, industry, and everyday life have had major effects on the land, vegetation, streams, ocean, air, and even outer space. But individuals and communities are doing things to help protect Earth’s resources and environments.

Standard

Develop a model using an example to describe ways the geosphere, biosphere, hydrosphere, and/or atmosphere interact.

Clarification Statement: Examples could include the influence of the ocean on ecosystems, landform shape, and climate; the influence of the atmosphere on landforms and ecosystems through weather and climate; and the influence of mountain ranges on winds and clouds in the atmosphere. The geosphere, hydrosphere, atmosphere, and biosphere are each a system.

Describe and graph the amounts and percentages of water and fresh water in various reservoirs to provide evidence about the distribution of water on Earth.

Obtain and combine information about ways individual communities use science ideas to protect the Earth’s resources and environment.

Science and Engineering Practices

Developing and Using Models

Modeling in 3–5 builds on K–2 experiences and progresses to building and revising simple models and using models to represent events and design solutions.

- Develop a model using an analogy, example, or abstract representation to describe a scientific principle.

Using Mathematics and Computational Thinking

Mathematical and computational thinking in 3–5 builds on K–2 experiences and progresses to extending quantitative measurements to a variety of physical properties and using computation and mathematics to analyze data and compare alternative design solutions.

- Describe and graph quantities such as area and volume to address scientific questions.

Obtaining, Evaluating, and Communicating Information

Obtaining, evaluating, and communicating information in 3–5 builds on K–2 experiences and progresses to evaluating the merit and accuracy of ideas and methods.

- Obtain and combine information from books and/or other reliable media to explain phenomena or solutions to a design problem.
The Science Pacing Guide is based on the Next Generation Science Standards, and the I CAN statements are tailored to the needs of the students in the Lansing School District. For easy access to the actual state standards as well as supporting information and resources visit the official Next Generation Science Standards website at: www.nextgenscience.org.

Introduction to Your Science Pacing Guide

Pacing Guides create a realistic time frame for instruction and assessment. They establish paced, student learning expectations and provide a starting point for the implementation of the Michigan State Standards.

The following tips may be helpful as you begin using the Pacing Guide:

• Introduce 9-week content skills according to the Pacing Guide.
• Once a skill is mastered, continue to practice it.
• Continue to reinforce skills and concepts throughout the year until mastery is achieved.
• Skills can be introduced earlier than listed, but no later, and can be assessed at any point after introduction.
• Compare your current pace to the Pacing Guide and adjust as needed.
• Become familiar with sequencing at previous and subsequent grade levels.
• The website, www.nextgenscience.org, can be used to find more information and to better understand Michigan State Standards.
• An electronic version of the Pacing Guides can be found on the Lansing School District homepage www.lansingschools.net under Quicklinks.

Vocabulary

Yvonne Caamil Canul Superintendent
Mark Coscarella, Ed.D. Deputy Superintendent
Mara Lud Executive Director of Instructional Learning
Delsa Chapman Director of Magnet Programs & High Schools

Many thanks to... the teachers and administrators who helped develop and revise the pacing guides.

Resources *

* List your recommended texts and resources - we will be collecting them at the end of the year.

Crosscutting Concepts

5-PS2-1 Cause and Effect
Causes and effect relationships are routinely identified and used to explain change.

5-ESS1-1 Scale, Proportion, and Quantity
Natural objects exist from the very small to the immensely large.

5-ESS1-2 Patterns
Similarities and differences in patterns can be used to sort, classify, communicate and analyze simple rates of change for natural phenomena.

Science

Fifth Grade • Fourth Quarter

Pacing Guide
<table>
<thead>
<tr>
<th>Core Idea</th>
<th>I CAN STATEMENT</th>
<th>Science and Engineering Practices</th>
<th>Fourth Quarter</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Engaging in Argument from Evidence</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Engaging in Argument from Evidence</td>
<td>Multiple Solutions to a Problem 3-5-TS1-2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Planning and Carrying Out Investigations</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Planning and Carrying Out Investigations</td>
<td></td>
</tr>
<tr>
<td>Motion and Stability: Forces and Interactions 5-PS2-1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Earth’s Place in the Universe E-SS1-1</td>
<td>Earth’s Place in the Universe E-SS1-2</td>
<td>Multiple Solutions to a Problem 3-5-TS1-2</td>
<td></td>
</tr>
<tr>
<td>I CAN STATEMENT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>□ I CAN show multiple ways that gravitational force is directed “down” - wherever you are on Earth.</td>
<td>□ I CAN show multiple ways that the brightness of an object (Sun, Stars) is influenced by distance from the earth.</td>
<td>□ I CAN use data to show and explain daily patterns of shadows from the Sun and Moon.</td>
<td>□ I CAN generate and compare multiple, possible solutions to a problem.</td>
</tr>
<tr>
<td>□ I CAN describe why gravitational “down” can be different from geo-coordinate “down” depending on your location on Earth.</td>
<td></td>
<td>□ I CAN use data to show the seasonal appearance of some stars in the night sky.</td>
<td>□ I CAN determine which solution best serves the constraints of the problem.</td>
</tr>
<tr>
<td>Core Idea</td>
<td>Types of Interactions</td>
<td>The Universe and its Stars</td>
<td>Earth and the Solar System</td>
</tr>
<tr>
<td></td>
<td>The gravitational force of Earth acting on an object near Earth’s surface pulls that object toward the planet’s center.</td>
<td>The sun is a star that appears larger and brighter than other stars because it is closer. Stars range greatly in their distance from Earth.</td>
<td>The orbits of Earth around the sun and of the moon around Earth, together with the rotation of Earth about an axis between its North and South poles, cause observable patterns. These include day and night; daily changes in the length and direction of shadows; and different positions of the sun, moon, and stars at different times of the day, month, and year.</td>
</tr>
<tr>
<td>Standard</td>
<td>Support an argument that the gravitational force exerted by Earth on objects is directed down.</td>
<td>Support an argument that differences in the apparent brightness of the sun compared to other stars is due to their relative distances from Earth.</td>
<td>Represent data in graphical displays to reveal patterns of daily changes in length and direction of shadows, day and night, and the seasonal appearance of some stars in the night sky.</td>
</tr>
<tr>
<td></td>
<td>Clarification Statement: “Down” is a local description of the direction that points toward the center of the spherical Earth.</td>
<td></td>
<td>Clarification Statement: Examples of patterns could include the position and motion of Earth with respect to the sun and selected stars that are visible only in particular months.</td>
</tr>
<tr>
<td>Science and Engineering Practices</td>
<td>Engaging in Argument from Evidence</td>
<td>Engaging in Argument from Evidence</td>
<td>Analyzing and Interpreting Data</td>
</tr>
<tr>
<td></td>
<td>Engaging in argument from evidence in 3–5 builds on K–2 experiences and progresses to critiquing the scientific explanations or solutions proposed by peers by citing relevant evidence about the natural and designed world(s). ▶ Support an argument with evidence, data, and/or a model.</td>
<td>Engaging in argument from evidence in 3–5 builds on K–2 experiences and progresses to critiquing the scientific explanations or solutions proposed by peers by citing relevant evidence about the natural and designed world(s). ▶ Support an argument with evidence, data, or a model.</td>
<td>Analyzing data in 3–5 builds on K–2 experiences and progresses to introducing quantitative approaches to collecting data and conducting multiple trials of qualitative observations. When possible and feasible, digital tools should be used. ▶ Represent data in graphical displays (bar graphs, pictographs and/or pie charts) to reveal patterns that indicate relationships.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>