The Mathematics Pacing Guide is based on the Common Core State Standards, and the I CAN statements are tailored to the needs of the students in the Lansing School District. For easy access to the actual state standards as well as supporting information and resources visit the official Common Core website at www.corestandards.org.

Many thanks to... the teachers and administrators who helped develop and revise the Pacing Guides.

The following tips may be helpful as you use the Pacing Guide:
- Introduce 9-week content skills according to the Pacing Guide.
- Incorporate the research-based instructional practices listed on the back.
- Once a skill is mastered, continue to practice it.
- Continue to reinforce skills and concepts throughout the year until mastery is achieved.
- Become familiar with sequencing at previous and subsequent grade levels.
- The website, www.corestandards.org, can be used to find more information and to better understand Common Core State Standards.
- An electronic version of the Pacing Guides can be found on the Lansing School District homepage www.lansingschools.net under Links.
Algebra II Mathematics First Quarter

Unit 1: Functions

Module 1: Analyzing Functions

1.2 F.IF.4, F.IF.6, A.CED.2, S.ID.6
Characteristics of Function Graphs
For a function that models a relationship between two quantities, interpret key features and sketch graphs showing key features.
- I CAN determine key attributes of a function and how they are related to the function’s graph.

1.4 F.BF.4(+)
Inverses of Functions
Find inverse functions.
- I CAN find the inverse of a function and prove that it is an inverse of the given function.

Module 2: Absolute Value Functions, Equations, and Inequalities

2.1 F.IF.4, F.IF.7, A.CED.2, F.BF.3
Graphing Absolute Value Functions
Graph piecewise-defined functions including absolute value functions.
- I CAN identify the features of the graph of an absolute value function.

2.2 A.CED.1, A.REI.3, A.REI.11
Solving Absolute Value Equations
Create equations and inequalities in one variable and use them to solve problems.
- I CAN solve an absolute value equation.

2.3 A.CED.1, A.REI.3, F.IF.7
Solving Absolute Value Inequalities
Create equations and inequalities in one variable and use them to solve problems.
- I CAN solve an absolute value inequality graphically or algebraically.

Unit 2: Quadratic Equations

Module 3: Quadratic Equations

3.1 N.CN.1, A.REI.4
Solving Equations by Taking Square Roots
Know there is a complex number i such that $i^2 = -1$, and every complex number has the form $a+bi$ with a being real.
- I CAN tell what an imaginary number is and how it is useful in solving Quadratic equations.

3.2 N.CN.1, N.CN.2
Complex Numbers
Use the relation $i^2 = -1$ and the commutative, associative, distributive properties to add, subtract, & multiply complex numbers.
- I CAN add, subtract, and multiply complex numbers.
The Mathematics Pacing Guide is based on the Common Core State Standards, and the I CAN statements are tailored to the needs of the students in the Lansing School District. For easy access to the actual state standards as well as supporting information and resources visit the official Common Core website at www.corestandards.org.

The following tips may be helpful as you use the Pacing Guide:

• Introduce 9-week content skills according to the Pacing Guide.
• Incorporate the research-based instructional practices listed on the back.
• Once a skill is mastered, continue to practice it.
• Continue to reinforce skills and concepts throughout the year until mastery is achieved.
• Become familiar with sequencing at previous and subsequent grade levels.
• The website, www.corestandards.org, can be used to find more information and to better understand Common Core State Standards.
• An electronic version of the Pacing Guides can be found on the Lansing School District homepage www.lansingschools.net under Links.

Many thanks to...

the teachers and administrators who helped develop and revise the Pacing Guides.

Vocabulary

Module 4
Center
Circles
Directrix
Distance
Focus
Linear systems with 2 and 3 unknowns
Parabolas
Radius
System of linear quadratic equations
Vertex

Module 5:
Cubic functions and transformations
End behavior
Factor
Polynomial functions
Turning points
x-intercepts
Zeros

Research-based Instructional Practices

• Actively seek out and encourage student’s thoughts and points of view, and allow students to make choices.
• Explicitly connect lesson content to students’ lives.
• Encourage meaningful peer interactions and promote peer conversations.
• Give students the floor. Avoid dominating classroom conversations by maintaining a balance of teacher and student talk. Help students consider different perspectives. Present and encourage multiple and varied points of view. Convey how and when to use concepts and procedures and the difference between them.
• Assist your students to define and refine their understanding by presenting an assortment of examples and contrasting non-examples that illustrate the concept or procedure.
• Offer extended opportunities for students to examine and analyze information. Engage students in higher-order thinking skills by giving them chances to explore data and evidence.
• Provide opportunities for students to make predictions and brainstorm consequences. Encourage them to discover and evaluate their own answers.
• Challenge students with open-ended tasks that have a variety of solutions and require students to think about how to use their knowledge in creative ways.
• Help students monitor their own thinking by showing them how you approach a problem and the questions you ask yourself to monitor your own thinking process. Model the process by thinking out loud.
• Help students think about their own learning by offering opportunities to reflect on, plan, and share their developing thought processes.

Yvonne Caamal Canul
Superintendent

Mark Coscarella, Ed.D.
Deputy Superintendent

Camela Diaz
Interim Assistant Director for Student Learning

Delsa Chapman
Executive Director for Student Learning

Introduction to Your Mathematics Pacing Guide
Module 4: Quadratic Relations and Systems of Equations

4.1: A.CED.2, A.CED.3, G.GPE.1, G.GPE.4
Circles
Represent constraints by equations or inequalities, and interpret solutions as viable or non-viable options in a modeling context.

☐ **I CAN** put the equation of a circle in standard form and I know how to find the center of the circle and the radius from the equation.

4.2: A.CED.2, A.CED.3, G.GPE.2
Parabolas
Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales.

☐ **I CAN** use the distance formula to drive the equations for both vertical and horizontal parabolas.

4.3: A.REI.7
Solving Linear-Quadratic Systems
Solve a simple system consisting of a linear equation and a quadratic equation in two variables algebraically and graphically.

☐ **I CAN** solve a system composed of a linear equation in two variables and a quadratic equation in two variables.

4.4: A.REI.6, A.CEI.3
Solving Linear Systems in Three Variables
Solve systems of linear equations exactly.

☐ **I CAN** find the solutions of a system of three linear equations in three variables.

Module 5: Polynomial Functions

5.2: F.IF.7
Graphing Polynomial Functions
Graph polynomial functions, identifying zeros when suitable factorizations are available, and showing end behavior.

☐ **I CAN** sketch the graph of a polynomial function in intercept form.
The Mathematics Pacing Guide is based on the Common Core State Standards, and the I CAN statements are tailored to the needs of the students in the Lansing School District. For easy access to the actual state standards as well as supporting information and resources visit the official Common Core website at www.corestandards.org.

This Mathematics Pacing Guide has been aligned to the Go Math! Series for this grade level. Please teach the units and concepts with fidelity in the order that they have been laid out.

We will review the pacing guide at the end of the year and adjust accordingly.

The following tips may be helpful as you use the Pacing Guide:
- Introduce 9-week content skills according to the Pacing Guide.
- Incorporate the research-based instructional practices listed on the back.
- Once a skill is mastered, continue to practice it.
- Continue to reinforce skills and concepts throughout the year until mastery is achieved.
- Become familiar with sequencing at previous and subsequent grade levels.
- The website, www.corestandards.org, can be used to find more information and to better understand Common Core State Standards.
- An electronic version of the Pacing Guides can be found on the Lansing School District homepage www.lansingschools.net under Links.

Yvonne Caamal Canul Superintendent
Camela Diaz Interim Assistant Director for Student Learning
Delsa Chapman Executive Director for Student Learning

Many thanks to... the teachers and administrators who helped develop and revise the Pacing Guides.

Mathematical Practices
- Make sense of problems and persevere in solving them.
- Reason abstractly and quantitatively.
- Construct viable arguments and critique the reasoning of others.
- Model with mathematics.
- Use appropriate tools strategically.
- Attend to precision.
- Look for and make use of structure.
- Look for and express regularity in repeated reasoning.

Vocabulary
- Module 6
 - Binomial
 - Binomial Experiment
 - Binomial Probability
 - Binomial Theorem
- Factoring
- Factor Theorem
- Irreducible Factor
- Pascal’s Triangle
- Polynomial
- Remainder Theorem
- Synthetic Theorem
- Synthetic substitution
- Module 7
 - Coefficients
 - Multiplicity
 - Rational
 - Root
 - Zeros

Research-based Instructional Practices
- Actively seek out and encourage student’s thoughts and points of view, and allow students to make choices.
- Explicitly connect lesson content to students’ lives.
- Encourage meaningful peer interactions and promote peer conversations.
- Give students the floor. Avoid dominating classroom conversations by maintaining a balance of teacher and student talk.
- Help students consider different perspectives. Present and encourage multiple and varied points of view.
- Convey how and when to use concepts and procedures and the difference between them.
- Assist your students to define and refine their understanding by presenting an assortment of examples and contrasting non-examples that illustrate the concept or procedure.
- Offer extended opportunities for students to examine and analyze information. Engage students in higher-order thinking skills by giving them chances to explore data and evidence.
- Provide opportunities for students to make predictions and brainstorm consequences. Encourage them to discover and evaluate their own answers.
- Challenge students with open-ended tasks that have a variety of solutions and require students to think about how to use their knowledge in creative ways.
- Help students monitor their own thinking by showing them how you approach a problem and the questions you ask yourself to monitor your own thinking process. Model the process by thinking out loud.
- Help students to think about their own learning by offering opportunities to reflect on, plan, and share their developing thought processes.
Algebra II
Unit 3: Polynomials

Module 6: Polynomials

6.1: A.APR.1, F.BF.1
Adding and Subtracting Polynomials
Understand that polynomials form a system closed under the operations of addition and subtraction.

☐ I CAN add or subtract two polynomials and define the type of the resulting expression.

6.2: A.APR.1, A.APR.4, F.BF.1
Multiplying Polynomials
Understand the polynomials form a system closed under multiplication.

☐ I CAN multiply polynomials and define the type of the resulting expression.

6.3: A.APR.5(+), A.APR.2, A.APR.3, A.CED.1
The Binomial Theorem
Know and apply the Binomial Theorem for the expansion of \((x + y)^n\) in powers of \(x\) and \(y\) for a positive integer \(n\), where \(x\) and \(y\) are any numbers, with coefficients determined for the example by Pascal’s Triangle.

☐ I CAN understand how to use the Binomial Theorem to find coefficients.

6.4: A.SSE.1, A.SSE.2, N.CN.8(+), A.APR.3, A.CED.1
Factoring Polynomials
Use the structure of an expression to identify ways to rewrite it.

☐ I CAN factor a polynomial and I can tell why factoring is useful.

6.5: A.APR.1, A.APR.3, A.APR.6
Dividing Polynomials
Rewrite simple rational expressions in different forms; write \(a/b(x)\) in the form \(q(x) + r(x)/b(x)\) using inspection and long division.

☐ I CAN divide a polynomial with the correct divisor using synthetic division and long division.

Unit 3: Equations

Module 7: Polynomial Equations

7.1: A.APR.2, A.APR.3, A.CED.3
Finding Rational Solutions of Polynomial Equations
Know and apply the Remainder Theorem. For a polynomial \(p(x)\) and a number \(a\), the remainder on division by \(x - a\) is \(p(a)\), so \(p(a) = 0\) if and only if \((x - a)\) is a factor of \(p(x)\).

☐ I CAN find the rational roots of a polynomial equation.

7.2: A.APR.2, A.APR.3, N.CN.9(+), A.REI.1, F.IF.7
Finding Complex Solutions of Polynomial Functions
Know and apply the Remainder Theorem.

☐ I CAN use the Fundamental Theorem of Algebra and its corollary to find the roots of the polynomial equation \(p(x) = 0\) where \(p(x)\) has degree \(n\).
The Mathematics Pacing Guide is based on the Common Core State Standards, and the I CAN statements are tailored to the needs of the students in the Lansing School District. For easy access to the actual state standards as well as supporting information and resources visit the official Common Core website at www.corestandards.org.

Yvonne Caamal Canul
Superintendent

Camela Diaz
Interim Assistant Director for Student Learning

Delsa Chapman
Executive Director for Student Learning

Many thanks to... the teachers and administrators who helped develop and revise the Pacing Guides.

This Mathematics Pacing Guide has been aligned to the Go Math! Series for this grade level. Please teach the units and concepts with fidelity in the order that they have been laid out.

We will review the pacing guide at the end of the year and adjust accordingly.

The following tips may be helpful as you use the Pacing Guide:

- Introduce 9-week content skills according to the Pacing Guide.
- Incorporate the research-based instructional practices listed on the back.
- Once a skill is mastered, continue to practice it.
- Continue to reinforce skills and concepts throughout the year until mastery is achieved.
- Become familiar with sequencing at previous and subsequent grade levels.
- The website, www.corestandards.org, can be used to find more information and to better understand Common Core State Standards.
- An electronic version of the Pacing Guides can be found on the Lansing School District homepage www.lansingschools.net under Links.

Revised 8.19
Algebra II

Unit 4: Rational Functions, Expressions, and Equations

Module 9: Rational Expressions and Equations

- **9.3: A.REI.1, A.REI.2, A.CED.1, A.CED.4**
 - **Rational Functions**
 - Solve simple rational and radical equations in one variable, and give examples showing how extraneous solutions may arise.
 - **I CAN** solve rational equations algebraically and graphically.

Unit 5: Rational Functions, Expressions, and Equations

Module 10: Rational Functions

- **10.2: F.IF.4, F.IF.6, F.IF.7, F.BF.3**
 - **Graphing Square Root Functions**
 - Graph square root functions.
 - **I CAN** use transformations of a parent square root function to graph functions of the form \(g(x) = a \cdot \sqrt{x - h} + k \) or \(g(x) = \sqrt{\frac{x}{b}} + k \).

Unit 6: Exponential and Logarithmic Functions & Equations

Module 13: Exponential Functions

- **13.4: F.LE.A.2, F.IF.C.7e, F.IF.C.7**
 - **Compound Interest**
 - Find an exponential regression model from data.
 - **I CAN** write an exponential equation from a graph, a description, or coordinate pairs.

Module 14: Modeling with Exponential and Other Functions

- **14.1: S.ID.B.6a, A.CED.A.2, F.IF.B.4**
 - **Fitting Exponential Functions to Data**
 - Fit a function to the data and use them to solve problems.
 - **I CAN** write an exponential equation from given data and use it to solve problems.
 - **14.2: S.ID.B.6a, A.CED.A.2, F.IF.B.4**
 - **Choosing Among Linear, Quadratic, and Exponential Models**
 - Determine which kind of model is best represented by points on a coordinate plane.
 - **I CAN** determine the correct type of exponential equation to fit given data.

Unit 7: Trigonometric Functions

Module 17: Unit-Circle Definition of Trigonometric Functions

- **17.1: F-TF.A.1, G-C.C.5**
 - **Angles of Rotation and Radian Measure**
 - Solve an angle's initial and terminal sides and defining standard position of an angle.
 - **I CAN** understand radians measured of an angle as the length of the arc on the unit circle subtended by the angle.

Module 18: Graphing Trigonometric Functions

- **18.1: F.IF.C.7e,F.BF.B.3, F.IF.B.4**
 - **Stretching, Compressing and Reflecting Sine and Cosine**
 - Describe features of sine and cosine.
 - **I CAN** graph exponential and logarithmic functions intercepts and end behaviors and trigonometric functions showing period, mid-line, and amplitude.

Module 19: Introduction to Probability

- **19.4: S-CP.A.4, S-CP.B.7**
 - **Mutually Exclusive and Overlapping Events**
 - Explain how to determine whether events are mutually exclusive or overlapping.

Unit 8: Probability

Module 20: Conditional Probability and Independence of Events

 - **Conditional Probability**
 - Find conditional probabilities.
 - **I CAN** use a Venn diagram to decide if events are independent and to approximate conditional probabilities.

Unit 9: Statistics

Module 22: Gathering and Displaying Data

- **22.1: 22.1S-IC.A.1**
 - **Data-gathering Techniques**
 - Show the relationships among population, census, and parameter, as well as sample, sampling and statistic.
 - **I CAN** understand statistics as a process for making inferences about a given population.