

High School Math – First Marking Period

WHAT STUDENTS NEED TO KNOW AND BE ABLE TO DO IN ALGEBRA I

Number and Quantity

I can add or multiply any rational numbers and get a rational answer.
I can show that adding any rational and irrational number will be irrational.
I can show that multiplying any rational and irrational number will be irrational.
I can interpret and use the correct units when solving a problem.
I can interpret and use a correct scale when graphing.
I can interpret and use a correct scale when displaying data.
I can use the correct quantities when modeling a problem.
I can determine an appropriate level of accuracy to assign to a quantity.

Algebra

I can identify separate terms in an expression.

I can identify the factors in an expression.

I can identify the coefficients in an expression.

I can split up a complicated problem into smaller expressions.

I can combine smaller parts into a more complicated expression.

I can create linear equations in one variable to solve problems.

I can create linear inequalities in one variable to solve problems.

I can create equations in two or more variables to solve problems.

I can graph equations on coordinate axes with correct labels and scales.

I can demonstrate the correct steps used to solve a simple problem.

I can demonstrate why the steps taken to solve a problem are correct.

I can demonstrate that a graph of any equation in two variables is the set of all of its solutions.

Statistics & Probability

Continued. . . Algebra I – First Marking Period

Functions

I can demonstrate that a function must have exactly one y-value for every x -value.

I can show that x-values are the domain and the y-values are the range.

I can show that the x-values are the input and the y-values are the output.

I can show that y is the same as f(x).

I can evaluate a function using different inputs (x-values).

I can interpret statements that use function notation.

I can interpret key features of graphs from their tables.

I can sketch a graph from a table that shows its key features.

I can sketch a graph from a verbal description of the relationship of the points.

I can determine an appropriate domain of a function based on the relationship it describes.

I can interpret and calculate the average rate of change of a function from a table.

I can interpret and calculate the average rate of change of a function from a graph.

I can estimate the rate of change from a graph.

I can graph linear functions showing key features by hand.

I can graph linear functions showing key features using technology.

I can compare two functions that are represented in different ways and identify key features. *I can* determine an explicit expression from a context.

I can determine a recursive process from a context.

I can determine the steps needed to solve a problem from a context.

I can determine how changes to an original function will change the graph of the functions. *I can* identify what factor affects the shape of the graph of a function.

I can use technology to show how changes to an original function change the shape of a graph.

I can prove that linear functions grow by adding or subtracting a constant rate of change. *I can* recognize when a quantity changes by a constant rate of change.

I can write a linear function from a graph.

I can write a linear function from a description.

I can write a linear function from two points.

I can determine a linear relationship in a real life context.

High School Math – Second Marking Period

WHAT STUDENTS NEED TO KNOW AND BE ABLE TO DO IN ALGEBRA I

Number and Quantity

I can convert rational exponents into radical notation.

I can use the rules of exponents even when the exponents are rational.

I can use the correct quantities when modeling a problem.

I can determine an appropriate level of accuracy to assign to a quantity.

Algebra

I can identify separate terms in an expression.

I can identify the factors in an expression.

I can identify the coefficients in an expression.

I can split up a complicated problem into smaller expressions.

I can combine smaller parts into a more complicated expression.

I can interpret and correctly rewrite an expression based on its structure.

I can rewrite a complicated expression into smaller parts to simplify it in easier ways.

I can use the properties of exponents to rewrite exponential functions.

I can create rational and exponential function to solve problems.

I can rearrange a formula to correctly solve for a variable.

I can demonstrate the correct steps used to solve a simple problem.

I can demonstrate why the steps taken to solve a problem are correct.

I can solve linear equations in one variable including equations with coefficients that are letters.

I can solve inequalities in one variable.

I can add two equations in two variables to solve a system.

I can multiply one or both equations in two variables in order to solve a system.

I can solve systems of two equations in two variables using a graph.

I can solve systems of two equations, one linear and one quadratic, in two variables using a graph.

I can solve a simple system of two equations, one linear and one quadratic, in two variables algebraically.

I can demonstrate that a graph of any equation in two variables is the set of all of its solutions.

I can explain why the x-coordinates where two graphs meet are the result of setting the two equations equal to each other.

I can make tables of two equations to approximate the intersection points.

I can make tables of two equations to approximate the intersection points.

I can graph a linear inequality in two variables as a half-plane of solution points.

I can graph two linear inequalities in two variables as two half-planes that intersect where all points are the solutions for both inequalities.

Continued. . . Algebra I – Second Marking Period

Functions

I can identify sequences as functions.

I can recognize sequences that are recursive.

I can interpret key features of graphs from their tables.

I can sketch a graph from a table that shows its key features.

I can sketch a graph from a verbal description of the relationship of the points.

I can determine an appropriate domain of a function based on the relationship it describes.

I can interpret and calculate the average rate of change of a function from a table.

I can interpret and calculate the average rate of change of a function from a graph.

I can estimate the rate of change from a graph.

I can graph a square root function.

I can graph a piecewise function.

I can graph an absolute value function.

I can use the properties of exponents in exponential functions to determine growth or decay.

I can compare two functions that are represented in different ways and identify key features.

I can write arithmetic sequences recursively to model situations.

I can write geometric sequences explicitly to model situations.

I can show how explicit formulas can be written as recursive formulas and vice versa.

I can prove that exponential functions grow by a multiplying by a constant factor.

I can recognize when a quantity grows at a constant percent rate of change.

I can recognize when a quantity decays at a constant percent rate of change.

I can write an exponential function from a graph.

I can write an exponential function from a description.

I can write an exponential function from a table.

I can show how an exponential function will increase faster than a linear function.

I can show how an exponential function will increase faster than a quadratic function.

I can show how an exponential function will increase faster than any polynomial function.

I can determine an exponential function in a real-life context.

Statistics and Probability

High School Math – Third Marking Period

WHAT STUDENTS NEED TO KNOW AND BE ABLE TO DO IN ALGEBRA I

Number and Quantity

I can identify a complex number as a number of the form a + bi.

I can define *i* as a complex number such that $l^2 = -1$.

I can solve quadratic equations with real coefficients that have complex number solutions.

Functions

I can show that y is the same as f(x).

I can evaluate a function using different inputs (x-values).

I can interpret statements that use function notation.

I can interpret key features of graphs from their tables.

I can sketch a graph from a table that shows its key features.

I can sketch a graph from a verbal description of the relationship of the points.

I can determine an appropriate domain of a function based on the relationship it describes.

I can graph quadratic functions showing key features by hand.

I can graph quadratic functions showing key features using technology.

I can graph a cube root function.

I can graph a polynomial function.

I can identify the zeros of a polynomial function using factoring when possible.

I can describe the end behaviors of a function.

I can factor a quadratic to find zeros.

I can complete the square to find zeros.

I can show the extreme values of a function.

I can identify the symmetry of a graph.

I can compare two functions that are represented in different ways and identify key features.

I can determine an explicit expression from a context.

I can determine a recursive process from a context.

I can determine the steps needed to solve a problem from a context.

I can combine standard functions using arithmetic operations.

I can determine how changes to an original function will change the graph of the functions.

I can identify what factor affects the shape of the graph of a function.

I can use technology to show how changes to an original function change the shape of a graph.

I can determine a quadratic relationship in a real-life context.

Continued. . . Algebra I – Third Marking Period

Algebra
<i>I can split up a complicated problem into smaller expressions.</i>
I can combine smaller parts into a more complicated expression.
I can interpret and correctly rewrite an expression based on its structure.
I can rewrite a complicated expression into smaller parts to simplify it in easier ways.
I can factor a quadratic to find its zeros.
I can complete the square in a quadratic to find the maximum value of the function.
I can complete the square in a quadratic to find the minimum value of the function.
I can use the rules for integers to add polynomials.
I can use the rules for integers to subtract polynomials.
I can use the rules for integers to multiply polynomials.
I can create quadratic equations in one variable to solve problems.
I can create rational and exponential function to solve problems.
I can create quadratic inequalities in one variable to solve problems.
I can represent reasonable limits by equations and inequalities based on the context of a problem.
I can interpret solutions as reasonable or not possible based on the context of a problem.
<i>I can demonstrate the correct steps used to solve a simple problem.</i>
I can demonstrate why the steps taken to solve a problem are correct.
<i>I can complete the square to transform any quadratic in x into a squared binomial.</i>
I can show how to derive the quadratic formula from a squared binomial.
<i>I can</i> solve a quadratic by taking square roots.
<i>I can</i> solve a quadratic by completing the square.
<i>I can solve a quadratic by using the quadratic formula.</i>
<i>I can</i> solve a quadratic by factoring.
<i>I can</i> see when the quadratic formula will give a complex number solution and write it as a + bi.
I can solve systems of two equations in two variables using a graph.
I can solve systems of two equations, one linear and one quadratic, in two variables using a graph.
I can solve a simple system of two equations, one linear and one quadratic, in two variables algebraically.
I can demonstrate that a graph of any equation in two variables is the set of all of its solutions.
<i>I can</i> explain why the x-coordinates where two graphs meet are the result of setting the two equations equal to each other.
I can make tables of two equations to approximate the intersection points.
<i>I can</i> graph two equations to approximate the intersection points.
Statistics & Probability

High School Math – Fourth Marking Period

WHAT STUDENTS NEED TO KNOW AND BE ABLE TO DO IN ALGEBRA I

Algebra
<i>I can use the rules for integers to add polynomials.</i>
I can use the rules for integers to subtract polynomials.
I can use the rules for integers to multiply polynomials.
I can identify the zeros of a polynomial by correctly factoring when possible.
I can construct a rough graph from the zeros of the polynomial.
I can expand a polynomial using the Binomial Theorem.
I can use Pascal's Triangle to find the value of the combinations in each term in the Binomial Theorem.
I can represent reasonable limits by equations and inequalities based on the context of a problem.
I can interpret solutions as reasonable or not possible based on the context of a problem.
I can demonstrate the correct steps used to solve a simple problem.
I can demonstrate why the steps taken to solve a problem are correct.
I can demonstrate that a graph of any equation in two variables is the set of all of its solutions.
Functions
I can show that y is the same as $f(x)$.

I can evaluate a function using different inputs (x-values).

I can interpret statements that use function notation.

I can graph a polynomial function.

I can identify the zeros of a polynomial function using factoring when possible.

I can describe the end behaviors of a function.

I can combine standard functions using arithmetic operations.

Statistics & Probability

I can make a dot plot on the real number line.

I can construct a histogram on the real number line.

I can construct a box plot on a real number line.

I can compare the central tendencies of two or more sets of data.

I can compare the interquartile range of two or more sets of data.

I can compare the standard deviation of two or more sets of data.

I can interpret the differences in the shape (skewness) of different data sets.

I can interpret the differences in the central tendencies of different data sets.

I can interpret the differences in the spreads of different data sets.

I can interpret how an outlier would affect the shape of a normal curve distribution.

I can interpret how an outlier would affect the spread of a data set.

Numbers and Quantity